Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oximes stereoselectivity

Synthesis from Aldehydes and Ketones. Treatment of aldehydes and ketones with potassium cyanide and ammonium carbonate gives hydantoias ia a oae-pot procedure (Bucherer-Bergs reactioa) that proceeds through a complex mechanism (69). Some derivatives, like oximes, semicarbazones, thiosemicarbazones, and others, are also suitable startiag materials. The Bucherer-Bergs and Read hydantoia syntheses give epimeric products when appHed to cycloalkanones, which is of importance ia the stereoselective syathesis of amino acids (69,70). [Pg.254]

Much better results are achieved in the addition of butyllithium to oxime ethers 4a, 4b and 4c activated by boron trifluoride-diethyl ether complex (BF3 OEt2) at — 78 °C (above a reaction temperature of — 30 °C complex mixtures of products are obtained) using toluene as the solvent. Furthermore, the stereoselectivity depends on the E/Z ratio of the starting oxime ethers. The reaction appears to be highly stereoselective, with the diastereoselectivity of the... [Pg.728]

Keywords Intramolecular 1,3-dipolar cycloadditions. Stereoselectivity, Nitrile oxides, SUyl nitronates. Oximes, H-Nitrones, Azides, NitrUimines... [Pg.1]

Chiral tricyclic fused pyrrolidines 29a-c and piperidines 29d-g have been synthesized starting from L-serine, L-threonine, and L-cysteine taking advantage of the INOC strategy (Scheme 4) [19]. L-Serine (23 a) and L-threonine (23 b) were protected as stable oxazolidin-2-ones 24a and 24b, respectively. Analogously, L-cysteine 23 c was converted to thiazolidin-2-one 24 c. Subsequent N-allylation or homoallylation, DIBALH reduction, and oximation afforded the ene-oximes, 27a-g. Conversion of ene-oximes 27a-g to the desired key intermediates, nitrile oxides 28 a-g, provided the isoxazolines 29 a-g. While fused pyrrolidines 29a-c were formed in poor yield (due to dimerization of nitrile oxides) and with moderate stereoselectivity (as a mixture of cis (major) and trans (minor) isomers), corresponding piperidines 29d-g were formed in good yield and excellent stereoselectivity (as exclusively trans isomers, see Table 3). [Pg.6]

In the seven-step stereoselective total synthesis of ptilocaulin 44 [21 ], a potent antileukemic and antimicrobial agent isolated [22] from marine sponges, the oxime 36 was treated with NaOCl providing the tricyclic isoxazoline 38 in 89% yield without isolation of the nitrile oxide intermediate 37 (Scheme 5) [23]. Isoxazoline 38 was obtained as a mixture of four diastereomers and their ratio was... [Pg.7]

Intramolecular nitrone cycloadditions often require higher temperatures as nitrones react more sluggishly with alkenes than do nitrile oxides and the products contain a substituent on nitrogen which may not be desirable. Conspicuously absent among various nitrones employed earlier have been NH nitrones, which are tautomers of the more stable oximes. However, Grigg et al. [58 a] and Padwa and Norman [58b] have demonstrated that under certain conditions oximes can undergo addition to electron deficient olefins as Michael acceptors, followed by cycloadditions to multiple bonds. We found that intramolecular oxime-olefin cycloaddition (lOOC) can occur thermally via an H-nitrone and lead to stereospecific introduction of two or more stereocenters. This is an excellent procedure for the stereoselective introduction of amino alcohol functionality via N-0 bond cleavage. [Pg.30]

A regio- and stereoselective Beckmann rearrangement utilized diastereose-lective host guest interactions of the inclusion complexes 225 and 228 in a solid state reaction. Initially, a 1 1 mixture of the chiral host 223 and the racemic oximes 224 and 227, respectively, was treated with ultra sound in the solid state to induce the optical resolution. Then H2SO4 was added to start the Beckmann rearrangement, the corresponding c-caprolactams 226 and 229 were isolated in 68 % and 64 % yields and ee of about 80 % and 69 % (determined by HPLC analysis on chiracel OC) (Scheme 43) [46]. [Pg.159]

One published stereoselective synthesis uses the base-catalysed cycllsation oi optically active enone (2) with a prolonged reaction time to get cis-(3) which is converted into (1) by degradation of the oxime. [Pg.445]

Related (diisopropoxyphosphoryl)- and (diisobutoxyphosphoryl)formonitrile oxides (114), generated in basic media from the corresponding oximes react in situ with alcohols, phenols, alkanethiols, thiophenols, aliphatic and aromatic primary amines, hydrazines and hydrazides as well as 4-aminoantipyryne to give hydroxymates, thiohydroxymates, and amidoximes, respectively. It is important to note that the addition is stereoselective and gives E-adducts with the exception of (i-Pr0)2P(0)C( N0H)0Me, which is formed as a 1 1 mixture of E and Z isomers. [Pg.16]

It should be emphasized that this consideration may be fruitful in explaining the stereoselectivity of other reactions of six-membered cyclic nitronates and oxime ethers (see, e.g., Section 3.5.2.3.). [Pg.590]

Silylation of AN (528b,c,e) with another silylating agent (Me3SiCl/Et3N) gives poorly separable mixtures of unidentified products. However, the reaction of AN (528a) under these conditions produces the silyl derivative of bis-oxime (533), which can be subjected to desilylation to prepare free bis-oxime (534) (491, 497). The stereoselectivity of the reaction with respect to the new C,C double bond is low (E/Z 1.3 1). Silylation of sterically more hindered nitroalkane (528 d)... [Pg.708]

In the asymmetric reduction of ketones, stereodifferentiation has been explained in terms of the steric recognition of two substituents on the prochiral carbon by chirally modified reducing agents40. Enantiomeric excesses for the reduction of dialkyl ketones, therefore, are low because of the little differences in the bulkiness of the two alkyl groups40. In the reduction of ketoxime ethers, however, the prochiral carbon atom does not play a central role for the stereoselectivity, and dialkyl ketoxime ethers are reduced in the same enantiomeric excess as are aryl alkyl ketoxime ethers. Reduction of the oxime benzyl ethers of (E)- and (Z)-2-octanone with borane in THF and the chiral auxiliary (1 R,2S) 26 gave (S)- and (R)-2-aminooctane in 80 and 79% ee, respectively39. [Pg.112]

Fig. 56 Stereoselective intramolecular coupling of a carbonyl group with an O-methyl oxime [308]. Fig. 56 Stereoselective intramolecular coupling of a carbonyl group with an O-methyl oxime [308].
Electrochemical reduction of camphor-and norcamphoroxime at a Hg cathode proceeds with a high degree of stereoselectivity to give products of opposite stereochemistry to those formed in the dissolving metal (Na-alcohol) reduction of the oximes. The electrolyses are proposed to proceed by a kinetically controlled attack by the electrode on each oxime from the less hindered side (Fig. 62) [348]. In contrast, the corresponding N-phenyl imines yield products of the same stereochemistry as those isolated from a dissolving metal reduction. Cyclic voltammetry and polarographic data point to RH and intermediates in this case that are proto-nated from the least hindered side [349]. [Pg.438]

Reduction of chiral ketoximes results in formation of a new stereogenic center. Although mixtures of stereoisomers are generally obtained, kineticaUy controlled reduction of cyclic oximes (e.g. 86, equation 59 and 87, equation 60) with sodium cyanoborohydride can proceed with high diastereoselectivity Stereoselectivity in these reactions closely resembles that of reduction of ketones with complex hydrides featuring attack from the least hindered side. [Pg.137]

Opposite stereoselectivity in reduction of cyclic oximes (e.g. 88, equation 61) can be achieved with silane-trifluoroacetic acid . ... [Pg.137]

Stereoselectivity in reductions of acyclic oximes depends on the configuration of C=N bond. ( )-Isomer of oxime 89 produced syn-hydroxylamine 90 in excellent stereoselectivity in reaction with phenyldimethylsilane-trifluroacetic acid while giving anti-product in the reaction with lithium aluminium hydride. Stereoselectivity in reductions of (Z)-isomers of 89 was substantially lower in both cases (equation 62) . It can be assumed that the rules of stereoselectivity established in diastereoselective reduction of ketones can be applied to reduction of oximes as well. [Pg.137]

Oximes undergo hydrogenation to hydroxylamines and/or amines depending on reaction conditions. Platinum oxide is the most frequently used catalyst for selective hydrogenation of oximes to hydroxylamines. Reduction of chiral oxime 96 over palladium catalyst (equation 66) proceeds in high yield and stereoselectivity. High stereoselectivity was observed in catalytic hydrogenation of a-alkoxyoximes . [Pg.139]

A high degree of stereoselectivity was achieved in reductive radical cyclizations with Coordination of the oxime function (e.g. 108) with samarium cation seems to play an important role, since the identical reaction with a tributyltin hydride/radical initiator system produces poor stereoselectivity (equation 79). ... [Pg.143]

Intramolecular oxime-alkene cycloaddition has been proved to proceed with complete stereoselectivity in carbohydrate derived hydroxylamine 171 (equation 112). [Pg.153]

Lewis acid catalyzed reaction of oximes 172 (equation 113) with divinyl ketone (173) provided l-aza-7-oxabicyclo[3.2.1]octan-4-ones 174 through a sequential Michael addition and [3 + 2] cycloaddition. The reaction occurred with complete stereoselectivity giving the same product with both cis- and frawi-oximes . [Pg.153]

A small number of examples is available for the synthesis of E and Z isomers of oximes. In many cases, E isomers were obtained either from the Z forms (by the hydrochloride method) or isolated by column chromatography. Often, the reagents that have been used for oximation of aldehydes and ketones also catalyze the interconversion of Z and E isomers. The rate of equilibration of a mixture of Z and E isomers and the position of the equilibrium is temperature-dependent ". In 2001, Sharghi and Sarvani reported a convenient method for controlling the stereochemistry of the reaction of hydroxylamine hydrochloride with aldehydes or ketones in the solid state. The highly stereoselective conversion of aldehydes and ketones to their corresponding oximes... [Pg.165]

Nitrile oxides are widely used as dipoles in cycloaddition reactions for the synthesis of various heterocyclic rings. In order to promote reactions between nitrile oxides and less reactive carbon nucleophiles, Auricchio and coworkers studied the reactivity of nitrile oxides towards Lewis acids. They observed that, in the presence of gaseous BF3, nitrile oxides gave complexes in which the electrophilicity of the carbon atom was so enhanced that it could react with aromatic systems, stereoselectively yielding aryl oximes 65 and 66 (Scheme 35). ... [Pg.180]


See other pages where Oximes stereoselectivity is mentioned: [Pg.28]    [Pg.85]    [Pg.170]    [Pg.528]    [Pg.558]    [Pg.558]    [Pg.42]    [Pg.695]    [Pg.22]    [Pg.32]    [Pg.152]    [Pg.3]    [Pg.35]    [Pg.170]    [Pg.26]    [Pg.564]    [Pg.1194]    [Pg.13]    [Pg.216]    [Pg.112]    [Pg.491]    [Pg.466]    [Pg.375]    [Pg.244]   
See also in sourсe #XX -- [ Pg.64 ]

See also in sourсe #XX -- [ Pg.8 , Pg.64 ]

See also in sourсe #XX -- [ Pg.8 , Pg.64 ]




SEARCH



Hydrogenation, catalytic oxime, stereoselective

Oxime ethers stereoselective reductions

Oxime stereoselective

Oxime stereoselective

Oximes stereoselective reduction

© 2024 chempedia.info