Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidoreductase, example

In order to broaden the field of biocatalysis in ionic liquids, other enzyme classes have also been screened. Of special interest are oxidoreductases for the enan-tioselective reduction of prochiral ketones [40]. Formate dehydrogenase from Candida boidinii was found to be stable and active in mixtures of [MMIM][MeS04] with buffer (Entry 12) [41]. So far, however, we have not been able to find an alcohol dehydrogenase that is active in the presence of ionic liquids in order to make use of another advantage of ionic liquids that they increase the solubility of hydrophobic compounds in aqueous systems. On addition of 40 % v/v of [MMIM][MeS04] to water, for example, the solubility of acetophenone is increased from 20 mmol to 200 mmol L ... [Pg.342]

These enzymes catalyze the addition of the elements of water to carbon-carbon double bonds (C=C), carbon-carbon triple bonds (C C), carbon-nitrogen double bonds (C=N), or carbon-nitrogen triple bonds (C N). These reactions are completely different from oxidoreductases since no redox reactions are involved. Illustrative examples include the following ... [Pg.130]

There are several 2-ketoglutarate anaerobic oxidoreductases, for example, in Thauera aro-matica (Dorner and Boll 2002) and Azoarcus evansii (Ebenau-Jehle et al. 2003). Their role in the metabolism of arene carboxylates is discussed in Chapter 8, Part 3. [Pg.164]

The possibility of isolating the components of the two above-reported coupled reactions offered a new analytical way to determine NADH, FMN, aldehydes, or oxygen. Methods based on NAD(P)H determination have been available for some time and NAD(H)-, NADP(H)-, NAD(P)-dependent enzymes and their substrates were measured by using bioluminescent assays. The high redox potential of the couple NAD+/NADH tended to limit the applications of dehydrogenases in coupled assay, as equilibrium does not favor NADH formation. Moreover, the various reagents are not all perfectly stable in all conditions. Examples of the enzymes and substrates determined by using the bacterial luciferase and the NAD(P)H FMN oxidoreductase, also coupled to other enzymes, are listed in Table 5. [Pg.262]

Two forms of xanthine oxidoreductase namely XO and XDH are present in many human and animal cells and plasma, XDH and XO are the predominant species in cytoplasma and serum, respectively [39]. Damaging effects of XO-catalyzed superoxide production in post-ischemic tissues were demonstrated by many authors. For example, Chambers et al. [40] and Hearse et al. [41] have shown that the suppression of superoxide production by the administration of XO inhibitor allopurinol or SOD resulted in the reduction of infarct size in the dog and of the incidence of reperfusion-induced arrhythmia in the rat. Similarly, Charlat et al. [42] has also shown that allopurinol improved the recovery of the contractile function of reperfused myocardium in the dog. However, the use of allopurinol as the XO inhibitor has been questioned because this compound may affect oxygen radical formation not only as a XO inhibitor but as well as free radical scavenger [43]. Smith et al. [44] also showed that gastric mucosal injury depends on the oxygen radical production catalyzed by XO and iron. [Pg.722]

The reactions presented here must not be confused with oxidative reactions that increase bond order and are catalyzed by oxidoreductases, as discussed elsewhere. Examples of the latter reactions include the cytochrome P450 mediated oxidation of testosterone to 6,7-dehydrotestosterone, and the oxidation of l,2,3,6-tetrahydro-l-methyl-4-phenylpyridine to 2,3-dihydro-1-methy 1-4-phenylpyridinium catalyzed by monoamine oxidase (Chapt. 4 and 9 in [50]). [Pg.723]

NAD(P)+ as Anode Mediator. A majority of redox enzymes require the cation nicotinamide adenine dinucleotide, possibly phosphorylated (NAD(P)+) as a cofactor. Of the oxidoreductases listed in Enzyme Nomenclature, over 60% have NAD(P)+ as a reactant or product.For example, methanol can be oxidized to form formaldehyde by methanol dehydrogenase (MDH, EC 1.1.1.244) according to... [Pg.636]

More than 2000 different enzymes are currently known. A system of classification has been developed that takes into account both their reaction specificity and their substrate specificity. Each enzyme is entered in the Enzyme Catalogue with a four-digit Enzyme Commission number (EC number). The first digit indicates membership of one of the six major classes. The next two indicate subclasses and subsubclasses. The last digit indicates where the enzyme belongs in the subsubclass. For example, lactate dehydrogenase (see pp. 98-101) has the EC number 1.1.1.27 (class 1, oxidoreductases subclass 1.1, CH-OH group as electron donor sub-subclass 1.1.1, NAD(P) " as electron acceptor). [Pg.88]

Finally, a divalent iron is incorporated into the ring. This step also requires a specific enzyme, ferrochelatase. The heme b or Fe-pro-toporphyrln IX formed in this way is found in hemoglobin and myoglobin, for example (see p. 280), where it is noncovalently bound, and also in various oxidoreductases (see p. 106). [Pg.192]

The EC number contains four numerical elements each separated by points. For example, alcohol dehydrogenase is assigned the number EC 1.1.1.1. The first numerical element (the furthest one to the left) identifies which of the six main classes the enzyme belongs. For alcohol dehydrogenase, this class is the oxidoreductases. The second element identifies the subclass for EC 1.1.x.x, this refers to oxidoreductases acting on the CH—OH group of donors. The third element identifies the sub-sub-class for EC 1.1.1.x this refers to oxidoreductases that use NAD or NADP+ as the acceptor. The final sub-sub-sub-class is unique for that enzyme-catalyzed reaction. [Pg.237]

This chapter covers some general aspects of the use of enzymes in aqueous and organic media. Although lipases are the most common biocatalysts in these processes [4], other hydrolytic enzymes such as esterases and nitrilases have also shown their utility in the manufacture of pharmaceuticals. In addition, some representative examples using oxidoreductases and lyases will be also discussed. [Pg.214]

UV/Vis-spectroscopy is the classical method of analysis of enzyme activity. The principle is the change in absorption behavior of a substrate during the reaction process, for example by modification or Hberation of a chromophoric function. A number of enzymes from different classes can be assayed spectrophoto-metrically using their natural substrates or cofactors. In this way, activity of acetyltransferases can be estimated by measurement of absorption of acetyl coenzyme A at 232 nm [33]. Oxidoreductases which require a cofactor, e.g., NAD/NADH, to carry out the transfer of hydrogen can be characterized by measuring the absorption of this cofactor depending on its oxidation stage [33]. [Pg.10]

Oxidoreductases, which catalyze oxidation-reduction reactions and are acting, for example, on aldehyde or keto groups. An important application is the synthesis of chiral molecules, especially chiral PFCs (22 out of 38 chiral products produced on large industrial scale are already made using biocatalysis). [Pg.35]

However, it should be noted that caution should be exercised when Prelog s rule is applied to such complicated systems as intact cells (baker s yeast), which may contain oxidoreductases of different stereoselectivity230 231. For example, in the reduction of 39 to alcohol 40, Prelog s rule fails232. [Pg.457]


See other pages where Oxidoreductase, example is mentioned: [Pg.311]    [Pg.15]    [Pg.195]    [Pg.7]    [Pg.12]    [Pg.449]    [Pg.420]    [Pg.421]    [Pg.219]    [Pg.238]    [Pg.344]    [Pg.155]    [Pg.566]    [Pg.37]    [Pg.168]    [Pg.113]    [Pg.89]    [Pg.461]    [Pg.358]    [Pg.373]    [Pg.374]    [Pg.13]    [Pg.176]    [Pg.45]    [Pg.247]    [Pg.20]    [Pg.29]    [Pg.86]    [Pg.577]    [Pg.41]    [Pg.42]    [Pg.157]    [Pg.943]    [Pg.191]   
See also in sourсe #XX -- [ Pg.100 ]




SEARCH



Oxidoreductase

© 2024 chempedia.info