Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxide dissolution, decomposition

In appHcations as hard surface cleaners of stainless steel boilers and process equipment, glycoHc acid and formic acid mixtures are particularly advantageous because of effective removal of operational and preoperational deposits, absence of chlorides, low corrosion, freedom from organic Hon precipitations, economy, and volatile decomposition products. Ammoniated glycoHc acid Hi mixture with citric acid shows exceUent dissolution of the oxides and salts and the corrosion rates are low. [Pg.516]

Beryllium Nitrate. BeryUium nitrate tetrahydrate [13516-48-0], Be(N02)2 4H2O, is prepared by crystallization from a solution of beryUium hydroxide or beryllium oxide carbonate in a slight excess of dilute nitric acid. After dissolution is complete, the solution is poured into plastic bags and cooled to room temperature. The crystallization is started by seeding. Crystallization from more concentrated acids yields crystals with less water of hydration. On heating above 100°C, beryllium nitrate decomposes with simultaneous loss of water and oxides of nitrogen. Decomposition is complete above 250°C. [Pg.76]

In principle, the oxidation of proceeds at an electrode potential that is more negative by about 0.7 V than the anodic decomposition paths in the above cases however, because of the adsorption shift, it is readily seen that practically there is no energetic advantage compared to CdX dissolution in competing for photogenerated holes. Similar effects are observed with Se and Te electrolytes. As a consequence of specific adsorption and the fact that the X /X couples involve a two-electron transfer, the overall redox process (adsorption/electron trans-fer/desorption) is also slow, which limits the degree of stabilization that can be attained in such systems. In addition, the type of interaction of the X ions with the electrode surface which produces the shifts in the decomposition potentials also favors anion substitution in the lattice and the concomitant degradation of the photoresponse. [Pg.224]

Desizing by chemical decomposition is applicable to starch-based sizes. Since starch and its hydrophilic derivatives are soluble in water, it might be assumed that a simple alkaline rinse with surfactant would be sufficient to effect removal from the fibre. As is also the case with some other size polymers, however, once the starch solution has dried to a film on the fibre surface it is much more difficult to effect rehydration and dissolution. Thus controlled chemical degradation is required to disintegrate and solubilise the size film without damaging the cellulosic fibre. Enzymatic, oxidative and hydrolytic degradation methods can be used. [Pg.101]

Both models apply the same chemical scheme of mercury transformations. It is assumed that mercury occurs in the atmosphere in two gaseous forms—gaseous elemental HgO, gaseous oxidized Hg(II) particulate oxidized Hgpart, and four aqueous forms—elemental dissolved HgO dis, mercury ion Hg2+, sulphite complex Hg(S03)2, and aggregate chloride complexes HgnClm. Physical and chemical transformations include dissolution of HgO in cloud droplets, gas-phase and aqueous-phase oxidation by ozone and chlorine, aqueous-phase formation of chloride complexes, reactions of Hg2+ reduction through the decomposition of sulphite complex, and adsorption by soot particles in droplet water. [Pg.365]

Surface Reactions. As we have seen from the dissolution of oxides the surface-controlled dissolution mechanism would have to be interpreted in terms of surface reactions in other words, the reactants become attached at or interact with surface sites the critical crystal bonds at the surface of the mineral have to be weakened, so that a detachment of Ca2+ and C03 ions of the surface into the solution (the decomposition of an activated surface complex) can occur. [Pg.292]

For this reason, the dissolution of hydrous oxides does not require a high energy of activation. If hydrous oxides are dehydrated, they become dry oxides, which therefore acquire higher resistance to anodic dissolution. The most straightforward way to obtain dry oxides is to subject hydrous oxides to thermal treatments or better to prepare them as thin surface films by a non-electrochemical technique (thermal decomposition, chemical vapor deposition, reactive sputtering, etc.). [Pg.257]

Barium carbonate decomposes to barium oxide and carbon dioxide when heated at 1,300°C. In the presence of carbon, decomposition occurs at lower temperatures. Barium carbonate dissolves in dilute HCl and HNO3 liberating CO2. Similar reaction occurs in acetic acid. The solid salts, chloride, nitrate and acetate that are water soluble may be obtained by evaporation of the solution. Dissolution in HF, followed by evaporation to dryness, and then heating to red heat, yields barium fluoride. [Pg.83]

On the basis of this model, Lovley et al. (17) argued that reductive dissolution of ferric oxides must be a microbiological process because the zone of sulfide generation is distinct from the zone of maximum ferric oxide reduction. Highly eutrophic environments would be an exception. In these systems the zone of decomposition with oxygen as terminal electron acceptor directly overlies the zone of sulfate reduction. [Pg.379]


See other pages where Oxide dissolution, decomposition is mentioned: [Pg.214]    [Pg.291]    [Pg.36]    [Pg.251]    [Pg.24]    [Pg.4272]    [Pg.240]    [Pg.850]    [Pg.899]    [Pg.262]    [Pg.210]    [Pg.211]    [Pg.217]    [Pg.219]    [Pg.215]    [Pg.684]    [Pg.317]    [Pg.162]    [Pg.247]    [Pg.255]    [Pg.344]    [Pg.312]    [Pg.429]    [Pg.899]    [Pg.107]    [Pg.171]    [Pg.1109]    [Pg.5]    [Pg.480]    [Pg.240]    [Pg.383]    [Pg.542]    [Pg.871]    [Pg.140]    [Pg.300]    [Pg.157]    [Pg.140]    [Pg.145]    [Pg.278]   
See also in sourсe #XX -- [ Pg.254 , Pg.271 ]




SEARCH



Decomposition oxidant

Oxidation decomposition

Oxidative decomposition

Oxidative dissolution

Oxide dissolution

Oxides, decompositions

© 2024 chempedia.info