Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative addition Radical mechanism

The mechanism of the reactions of aryl halides cannot occur by the common S 2 patii for the oxidative addition of methyl halides, and most aryl halides lack substituents that would make them sufficiently electrophilic to react by nucleophilic aromatic substitution pathways. As presented in the section on radical pathways for oxidative addition, aryl halides react with metal complexes that readUy imdergo one-electron oxidation by radical mechanisms. However, metal complexes that do not readily undergo one-electron processes tend to react by two-electron mechanisms. Thus, aryl halides typically react with tP" palladium(O) complexes by concerted pathways through three-centered transition states. No strong data for a radical pathway has been gained during the many studies on the oxidative addition of aryl halides to Pd(0). In contrast, evidence that oxidative addition of aryl halides to P, iridium, Vaska-t)q)e complexes occurs by a radical pathway has been published. ... [Pg.310]

The introduction of additional alkyl groups mostly involves the formation of a bond between a carbanion and a carbon attached to a suitable leaving group. S,.,2-reactions prevail, although radical mechanisms are also possible, especially if organometallic compounds are involved. Since many carbanions and radicals are easily oxidized by oxygen, working under inert gas is advised, until it has been shown for each specific reaction that air has no harmful effect on yields. [Pg.19]

Most of the free-radical mechanisms discussed thus far have involved some combination of homolytic bond dissociation, atom abstraction, and addition steps. In this section, we will discuss reactions that include discrete electron-transfer steps. Addition to or removal of one electron fi om a diamagnetic organic molecule generates a radical. Organic reactions that involve electron-transfer steps are often mediated by transition-metal ions. Many transition-metal ions have two or more relatively stable oxidation states differing by one electron. Transition-metal ions therefore firequently participate in electron-transfer processes. [Pg.724]

Dicyclopentadienyltin also takes part in oxidative addition reactions with such reagents as iodomethane, diiodomethane, ethyl bromoace-tate, and diphenyl disulfide, and there is evidence that the reactions involve a radical chain-mechanism (324, 325). [Pg.27]

An alternative mechanism by which additives may protect polymers from photo-oxidation is radical trapping. Additives which operate by this mechanism are strictly light stabilizers rather than antioxidants. The most common materials in this class are the hindered amines, which are the usual additives for the protection of poly (ethylene) and poly (propylene). The action of these stabilisers is outlined in Reactions 8.3-8.5. [Pg.124]

In this chapter, we discuss free-radical substitution reactions. Free-radical additions to unsaturated compounds and rearrangements are discussed in Chapters 15 and 18, respectively. In addition, many of the oxidation-reduction reactions considered in Chapter 19 involve free-radical mechanisms. Several important types of free-radical reactions do not usually lead to reasonable yields of pure products and are not generally treated in this book. Among these are polymerizations and high-temperature pyrolyses. [Pg.896]

Mechanisms of aldehyde oxidation are not firmly established, but there seem to be at least two main types—a free-radical mechanism and an ionic one. In the free-radical process, the aldehydic hydrogen is abstracted to leave an acyl radical, which obtains OH from the oxidizing agent. In the ionic process, the first step is addition of a species OZ to the carbonyl bond to give 16 in alkaline solution and 17 in acid or neutral solution. The aldehydic hydrogen of 16 or 17 is then lost as a proton to a base, while Z leaves with its electron pair. [Pg.917]

Although these reactions are formulated as ionic reactions via 947 and 949, because of the apparent partial formation of polymers and inhibition of the fluoride-catalyzed reaction of pyridine N-oxide 860 with aUyl 82 or benzyltrimethylsilane 83 by sulfur or galvinoxyl yet not by Tempo, a radical mechanism caimot be excluded [61, 62]. The closely related additions of allyltrimethylsilane 82 (cf. Section 7.3) to nitrones 976 are catalyzed by TMSOTf 20 to give, via 977, either o-unsatu-rated hydroxylamines 978 or isoxazoHdines 979 (cf also the additions of 965 to 962a and 969 in schemes 7.20 and 7.21). [Pg.161]

Treatment of a-tocopherol (1) with elemental bromine provided quantitative yields of 5a-bromo-a-tocopherol (46). The reaction was assumed to proceed according to a radical mechanism, but later a nonradical oxidation-addition mechanism was proven (Fig. 6.33). Bromine oxidized a-tocopherol (1) to the intermediate ortho-qainone methide (3), which in turn added the HBr produced in the oxidation step.60 If the HBr was removed by flushing with nitrogen, the spiro dimer (9) became the main product, and if it was purged by HC1 gas, mainly 5a-chloro-a-tocopherol was produced. [Pg.195]

A crystal structure of the C02 derivative of (8), K[Co(salen)( 71-C02)], haso been reported in which the Co—C bond is 1.99 A, the C—O bonds are both equivalent at 1.22 A and the O-C-O angle is 132°.125 Carboxylation of benzylic and allylic chlorides with C02 in THF-HMPA was achieved with (8) electrogenerated by controlled-potential electrolysis,126 in addition to reductive coupling of methyl pyruvate, diethyl ketomalonate and / -tolylcarbodiimide via C—C bond formation. Methyl pyruvate is transformed into diastereomeric tartrates concomitant with oxidation to the divalent Co(salen) and a free-radical mechanism is proposed involving the homolytic cleavage of the Co—C bond. However, reaction with diphenylketene (DPK) suggests an alternative pathway for the reductive coupling of C02-like compounds. [Pg.11]

The reaction is retarded by the addition of the radical chain scavengers 2,6-di-/-butyl-4-methylphenol and hydroquinone. The oxidation rate is not affected by the oxygen pressure (Table 2), indicating that re-oxidation of Ce(III) in 1 is not rate limiting. The oxidation rate is first order in formaldehyde and goes through a maximum with increasing concentration of 1. All these phenomena are consistent with a chain radical mechanism of oxidation (11,12). [Pg.431]

However, the existence of an extremely reactive bound hydroxyl radical is questionable because it is difficult to understand why it does not immediately react with adjacent molecules (most of the reactions of hydroxyl radicals proceed with the rates close to a diffusion limit). Therefore, the mechanism proposed by Zhang et al. [7,8] seems to be much more convincing. They suggested that the genuine oxidizing free radical formed during SOD inactivation is the bicarbonate radical anion CO/, which is formed as a result of the oxidation of bicarbonate. It has also been suggested that DMPO OH is formed by the addition of water to an intermediate of the reaction of DMPO with CO/ via a nucleophilic or electron transfer mechanism. [Pg.908]

The familiar standard de carbonyl at ion mechanism ( 3, 5) involving a concerted oxidative-addition of aldehyde, CO migration (with subsequent elimination), and reductive-elimination of product, would seem with metalloporphyrins to require coordination numbers higher than six, and in this case Ru(IV) intermediates. Although this is plausible, the data overall strongly suggest a radical mechanism and Ru(III) intermediates. [Pg.248]

The oxidative addition of alkyl halides can proceed in different ways, although the result is usually atrans addition independent of the mechanism. In certain cases the reaction proceeds as an SN2 reaction as in organic chemistry. That is to say that the electron-rich metal nucleophile attacks the carbon atom of the alkyl halide, the halide being the leaving group. This process leads to inversion of the stereochemistry of the carbon atom (only when the carbon atom is asymmetric can this be observed). There are also examples in which racemisation occurs. This has been explained on the basis of a radical chain... [Pg.37]

The possibility that substitution results from halogen-atom transfer to the nucleophile, thus generating an alkyl radical that could then couple with its reduced or oxidized form, has been mentioned earlier in the reaction of iron(i) and iron(o) porphyrins with aliphatic halides. This mechanism has been extensively investigated in two cases, namely the oxidative addition of various aliphatic and benzylic halides to cobalt(n) and chromiumfn) complexes. [Pg.115]

Oxidation of 44 is completely inhibited by the addition of a small amount of 2,4,6-tri-f-butylphenol. Consequently, the oxidation of the Si—Si bond with oxygen displays the following features 1) a Si—Si bond which is either angle-strained or substituted with more than two fluorine atoms is easily oxidized 2) a radical mechanism is operative 3) the insertion of oxygen into the Si—Si bond proceeds stereospecifically . Incorporation of molecular oxygen was also observed in the direct photolysis of the cyclopolysilanes 80 and 81 (equations 88 and 89) . ... [Pg.815]


See other pages where Oxidative addition Radical mechanism is mentioned: [Pg.847]    [Pg.152]    [Pg.846]    [Pg.263]    [Pg.278]    [Pg.246]    [Pg.194]    [Pg.937]    [Pg.240]    [Pg.896]    [Pg.195]    [Pg.262]    [Pg.344]    [Pg.458]    [Pg.304]    [Pg.211]    [Pg.794]    [Pg.649]    [Pg.877]    [Pg.448]    [Pg.273]    [Pg.562]    [Pg.410]    [Pg.46]    [Pg.489]    [Pg.224]    [Pg.736]    [Pg.940]    [Pg.48]    [Pg.201]    [Pg.246]    [Pg.419]    [Pg.206]    [Pg.940]   
See also in sourсe #XX -- [ Pg.222 , Pg.223 , Pg.224 , Pg.225 ]

See also in sourсe #XX -- [ Pg.147 , Pg.148 ]

See also in sourсe #XX -- [ Pg.170 , Pg.171 ]




SEARCH



Addition, radical mechanism

Additive mechanism

Mechanism oxidative addition

Mechanisms addition

Oxidation of styrene. The peroxy radical addition mechanism

Oxidation radical

Oxidation-addition mechanism

Oxide Radicals

Radical mechanism

© 2024 chempedia.info