Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation reactions microsomal oxidations

Since the results of our experiments with isolated rat liver fractions supported a reaction sequence Initiated by microsomal oxidation of the nitrosamine leading to formation of a carbonium ion, the results of the animal experiment suggested that in the intact hepatocyte, one of the earlier electrophilic intermediates (II, III or V, Figure 1) is intercepted by nucleophilic sites in DNA (exemplified here by the N7 position of guanine) before a carbocation is formed. [Pg.43]

Iron complexes or microsomal nonheme iron are undoubtedly obligatory components in the microsomal oxidation of many organic compounds mediated by hydroxyl radicals. In 1980, Cohen and Cederbaum [27] suggested that rat liver microsomes oxidized ethanol, methional, 2-keto-4-thiomethylbutyric acid, and dimethylsulfoxide via hydrogen atom abstraction by hydroxyl radicals. Then, Ingelman-Sundberg and Ekstrom [28] assumed that the hydroxylation of aniline by reconstituted microsomal cytochrome P-450 system is mediated by hydroxyl radicals formed in the superoxide-driven Fenton reaction. Similar conclusion has been made for the explanation of inhibitory effects of pyrazole and 4-methylpyrazole on the microsomal oxidation of ethanol and DMSO [29],... [Pg.767]

Estabrook, R.W., Hildebrandt, A.G., Baron, J., Netter, K.J. and Leibman, K. (1971) A new spectral intermediate associated with cytochrome P-450 function in liver microsomes. Biochemical and Biophysical Research Communications, 42 (1), 132-139. Pompon, D. and Coon, M.J. (1984) On the mechanism of action of cytochrome P-450. Oxidation and reduction of the ferrous dioxygen complex of liver microsomal cytochrome P-450 by cytochrome b5. Journal of Biological Chemistry, 259 (24), 15377-15385. Hildebrandt, A. and Estabrook, R.W. (1971) Evidence for the participation of cytochrome b 5 in hepatic microsomal mixed-function oxidation reactions. Archives of Biochemistry and Biophysics, 143 (1), 66-79. [Pg.245]

Coumarin (7.88) is a well-known 6-lactone (six-membered ring) of natural origin found in various preparations such as some tobaccos, alcoholic beverages, and cosmetics. Besides reactions of oxidation, reduction, and conjugation, coumarin is also subject to lactone hydration in vivo and in the presence of microsomes [170-174], The resulting metabolites include ortho-coumaric acid (7.89) formed directly from coumarin, 3-(2-hydroxyphenyl)-propionic acid (7.91) formed following reduction of coumarin to dihydrocou-... [Pg.423]

The -oxygenation of cyanatryn occurred readily with liver microsomes and 10,000 g supernatant (the latter was fortified with GSH and the observed product was the glutathione conjugate [5]). The reaction could be detected in 2% liver homogenates but not in homogenates of kidney, lung, intestine, or caecal content. The reaction was readily catalyzed by microsomes from the livers of male and female rats, male and female rabbits and a male human (Table 1)(9). The rat sex difference was much larger for N-de-ethylation than for -oxidation. Typically, microsomes from male rats were more active than those from females. [Pg.59]

For foreign compounds, the majority of oxidation reactions are catalyzed by monooxygenase enzymes, which are part of the mixed function oxidase (MFO) system and are found in the SER (and also known as microsomal enzymes). Other enzymes involved in the oxidation of xenobiotics are found in other organelles such as the mitochondria and the cytosol. Thus, amine oxidases located in the mitochondria, xanthine oxidase, alcohol dehydrogenase in the cytosol, the prostaglandin synthetase system, and various other peroxidases may all be involved in the oxidation of foreign compounds. [Pg.77]

The most important enzyme involved in bio transformation is cytochrome P-450, which catalyzes many phase 1 reactions. This enzyme is located primarily in the SER (microsomal fraction) of the cell and is especially abundant in liver cells. Cytochrome P-450 primarily catalyzes oxidation reactions and consists of many isoforms (isozymes). These isoenzymes have overlapping substrate specificities. The most important subfamily in humans is CYP3A4, although there is considerable variation in CYP3A4 expression between individuals. [Pg.124]

Major oxidations are aromatic, aliphatic, alicyclic, heterocyclic, N-oxidation, S-oxidation, dealkylation. Other enzymes also catalyze phase 1 reactions microsomal flavin monooxygenases, amine oxidases, peroxidases, and alcohol dehydrogenase. [Pg.124]

These reactions have been used for the deblocking of protecting groups. In the case of amines, the formation of metabolites is possible because the anodic oxidation of amines equals the microsomal oxidation to a large extent. [Pg.656]

Under hypoxic conditions, cellular enzymes reduce the benzotriazine di-N-oxide [(reaction (68) P450 reductase Cahill and White 1990 and NADPH may be involved Walton et al. 1992 Wang et al. 1993]. Upon microsomal reduction of tirapazamine the radical formed in reaction (68) has been identified by EPR (Lloyd et al. 1991). Using the pulse radiolysis technique, it has been shown that this radical has a pKd of 6 (Laderoute et al. 1988), and it is the protonated form that undergoes the DNA damaging reaction (Wardman et al. 2003). The rate constants of the bimolecular decay of the radical [reaction (70)] has been found to be 2.7 x 107 dm3 mol-1 s 1. The reaction with its anion is somewhat faster (8.0 x 108 dm3 mol-1 s 1), while the deprotonated radicals do not react with one another at an appreciable rate. From another set of pulse radiolysis data, a first-order process has been extracted (k = 112 s 1) that has been attributed to the water elimination reaction (72), and the tirapazamine action on DNA [reaction (74)] has been considered to be due to the resulting radical (Anderson et al. 2003). [Pg.417]

Reductive reactions, like oxidation, are carried out at different rates by enzyme preparations from different species. Microsomes from mammalian liver are 18 times or more higher in azoreductase activity and more than 20 times higher in nitroreductase activity than those from fish liver. Although relatively inactive in nitroreductase, fish can reduce the nitro group of parathion, suggesting multiple forms of reductase enzymes. [Pg.180]

Hepatic metabolism accounts for the clearance of all benzodiazepines. The patterns and rates of metabolism depend on the individual drugs. Most benzodiazepines undergo microsomal oxidation (phase I reactions), including TV-dealkylation and aliphatic hydroxylation. The metabolites are subsequently conjugated (phase II reactions) to form glucuronides that are excreted in the urine. However, many phase I metabolites of benzodiazepines are pharmacologically active, with long half-lives. [Pg.512]

Studies with various subcellular fractions are useful to ascertain which enzyme systems are involved in the metabolism of a chug candidate. In the absence of added cofactors, oxidative reactions such as oxidative deamination that are supported by mitochondria or by Ever microsomes contaminated with mitochondria membranes (as is the case with microsomes prepared from frozen liver samples) are likely catalyzed by monoamine oxidase (MAO), whereas oxidative reactions supported by cytosol are likely catalyzed by aldehyde oxidase and/or xanthine oxidase (a possible role for these enzymes in the metabolism of... [Pg.306]

In order to cover glucuronidation reactions in incubations in microsomal fractions several modifications have been applied in order to optimize conditions. These comprise longer incubation times than necessary for oxidative reactions by cytochrome P450s, and use of modifiers, both to overcome the latency in activity due to the diffusional barriers of the endoplasmatic reticulum (Coughtrie and Fisher 2003 Csala et al. 2004). Modifiers used are detergents or the pore-forming peptide alamethicin (Fisher 2000). Also disruption of cells by sonication is applied (Ethell 1998). [Pg.512]

The location, structure, classification, regulation, and mechanism of action of CYPs are discussed in Chapter 9. This chapter summarizes the reactions involved in the oxidation of xenobiotics by CYP and other enzymes. Although microsomal monooxygenase reactions are basically similar with respect to the role played by molecular oxygen and in the supply of electrons, the enzymes are markedly nonspecific, with both substrates and products falling into many different chemical classes. It is convenient, therefore, to classify these activities on the basis of chemical reactions, bearing in mind that not only do the classes often overlap, but the same substrate may undergo more than one oxidative reaction. [Pg.175]

Epoxidation Epoxidation is an important microsomal reaction. For example, the cyclodiene insecticide aldrin can be oxidized to its epoxide dieldrin (as shown in Chapter 4, Figure 4.4), and heptachlor is oxidized to heptachlor epoxide. There is no great increase in toxicity in this case, but the epoxides are more environmentally persistent than their precursors. Moreover, some of the epoxides produced in the microsomal oxidation are highly reactive and can form adducts with cellular macromolecules such as proteins, RNA, and DNA, often resulting in chemical carcinogenesis. [Pg.146]


See other pages where Oxidation reactions microsomal oxidations is mentioned: [Pg.289]    [Pg.87]    [Pg.92]    [Pg.39]    [Pg.154]    [Pg.172]    [Pg.771]    [Pg.398]    [Pg.197]    [Pg.95]    [Pg.77]    [Pg.91]    [Pg.418]    [Pg.474]    [Pg.772]    [Pg.91]    [Pg.289]    [Pg.124]    [Pg.1075]    [Pg.59]    [Pg.126]    [Pg.91]    [Pg.162]    [Pg.338]    [Pg.300]    [Pg.309]    [Pg.309]    [Pg.343]    [Pg.496]    [Pg.16]    [Pg.178]    [Pg.144]    [Pg.145]   
See also in sourсe #XX -- [ Pg.77 , Pg.78 , Pg.79 , Pg.80 , Pg.81 , Pg.82 , Pg.83 , Pg.84 , Pg.85 , Pg.86 , Pg.87 , Pg.88 , Pg.89 , Pg.90 , Pg.91 , Pg.92 ]




SEARCH



Biotransformation processes microsomal oxidative reactions

Lipid-soluble drugs microsomal oxidative reactions

Liver microsomal oxidative reactions

Microsomal

Microsomal microsomes

Microsomal oxidations

Microsomal oxidative reactions

Microsomal oxidative reactions

Microsomal reactions

Microsomes

Microsomes, oxidation

© 2024 chempedia.info