Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation copper-catalyzed

Fig. 82 Catalytic cycle of oxidative copper-catalyzed tandem cyclizations... Fig. 82 Catalytic cycle of oxidative copper-catalyzed tandem cyclizations...
Keywords Alcohol oxidations, peroxometal pathway, oxometal pathway, hydridometal pathway, ruthenium catalyzed oxidations, palladium catalyzed oxidations, copper catalyzed oxidations, hydrogen peroxide, fcrt-butyl hydroperoxide, dioxygen... [Pg.123]

Other tests to predict stabihty of gasoline have been developed and reported in the hterature. One, developed by the U.S. military, stores gasoline at elevated (43°C) temperatures for up to 12 weeks and measures existent gum at the end of that period (26). Another measures existent gum in the presence of copper. The copper catalyzes oxidation and may be a better estimator of the stabihty of gasoline at high temperature/low residence time conditions. [Pg.183]

There are some aspects in the raw dry NR grades for adhesive manufacturing to be considered. NR tends to suffer oxidative degradation catalyzed by metals (mainly copper). The susceptibility of NR to oxidation can be measured using the plasticity retention index. The better grades of rubber have the higher plasticity retention index. [Pg.582]

The main product of the Elbs reaction is the 1,4-dihydroxybenzene (hydro-quinone). If the para position is already occupied by a substituent, the reaction occurs at an ortho position, leading to a catechol derivative although the yields are not as good as for a hydroquinone. Better yields of catechols 7 can be obtained by a copper-catalyzed oxidation of phenols with molecular oxygen ... [Pg.103]

There are many ways to produce acetaldehyde. Historically, it was produced either hy the silver-catalyzed oxidation or hy the chromium activated copper-catalyzed dehydrogenation of ethanol. Currently, acetaldehyde is obtained from ethylene hy using a homogeneous catalyst (Wacker catalyst). The catalyst allows the reaction to occur at much lower temperatures (typically 130°) than those used for the oxidation or the dehydrogenation of ethanol (approximately 500°C for the oxidation and 250°C for the dehydrogenation). [Pg.198]

CHROMIUM TRIOXIDE-PYRIDINE COMPLEX, preparation in situ, 55, 84 Chrysene, 58,15, 16 fzans-Cinnamaldehyde, 57, 85 Cinnamaldehyde dimethylacetal, 57, 84 Cinnamyl alcohol, 56,105 58, 9 2-Cinnamylthio-2-thiazoline, 56, 82 Citric acid, 58,43 Citronellal, 58, 107, 112 Cleavage of methyl ethers with iodotri-methylsilane, 59, 35 Cobalt(II) acetylacetonate, 57, 13 Conjugate addition of aryl aldehydes, 59, 53 Copper (I) bromide, 58, 52, 54, 56 59,123 COPPER CATALYZED ARYLATION OF /3-DlCARBONYL COMPOUNDS, 58, 52 Copper (I) chloride, 57, 34 Copper (II) chloride, 56, 10 Copper(I) iodide, 55, 105, 123, 124 Copper(I) oxide, 59, 206 Copper(ll) oxide, 56, 10 Copper salts of carboxylic acids, 59, 127 Copper(l) thiophenoxide, 55, 123 59, 210 Copper(l) trifluoromethanesulfonate, 59, 202... [Pg.114]

Meerwein Arylation Reactions. Aryl diazonium ions can also be used to form certain types of carbon-carbon bonds. The copper-catalyzed reaction of diazonium ions with conjugated alkenes results in arylation of the alkene, known as the Meerwein arylation reaction.114 The reaction sequence is initiated by reduction of the diazonium ion by Cu(I). The aryl radical adds to the alkene to give a new (3-aryl radical. The final step is a ligand transfer that takes place in the copper coordination sphere. An alternative course is oxidation-deprotonation, which gives a styrene derivative. [Pg.1035]

Reduction of aryl diazonium ions by Ti(III) in the presence of a,(3-unsaturated ketones and aldehydes leads to (3-arylation and formation of the saturated ketone or aldehyde. The early steps in this reaction parallel the copper-catalyzed reaction. However, rather than being oxidized, the radical formed by the addition step is reduced by Ti(III).116... [Pg.1035]

These copper-catalyzed reactions are generally applicable to aryl halides with either EWG or ERG substituents. The order of reactivity is I > Br> Cl > 0S02R, which is consistent with an oxidative addition mechanism. [Pg.1044]

Table 12.1. Enantioselective Copper-Catalyzed Allylic Oxidation of Cyclohexene... Table 12.1. Enantioselective Copper-Catalyzed Allylic Oxidation of Cyclohexene...
Kachur, A., Koch, C., and Biaglow, J., Mechanism of copper-catalyzed oxidation of glutathione, Free Radic Res, 28 (3), 259-269, 1998. [Pg.423]

Using the results of an earlier study concerning enantioselective copper-catalyzed intramolecular C—H insertion of metal carbenoids,109 an interesting system for optimizing the proper combination of ligand, transition metal, and solvent for the reaction of the diazo compound (75) was devised (see Scheme 19).110 The reaction parameters were varied systematically on a standard 96-well microtiter/filtration plate. A total of five different ligands, seven metal precursors, and four solvents were tested in an iterative optimization mode. Standard HPLC was used to monitor stereoselectivity following DDQ-induced oxidation. This type of catalyst search led to the... [Pg.537]

Scheme 6.97 Copper-catalyzed asymmetric allylic oxidation of bridged bicyclic alkenes. Scheme 6.97 Copper-catalyzed asymmetric allylic oxidation of bridged bicyclic alkenes.
Red wine contains quercetin, rutin, catechin, and epicatechin, among other flavonoids (Frankel and others 1993). Quercetin and other phenolic compounds isolated from wines were found to be more effective than a-tocopherol in inhibiting copper-catalyzed LDL oxidation. It has been determined that quercetin has also several anti-inflammatory effects it inhibits inflammatory cytokine production (Boots and others 2008), inducible NO synthase expression and activation of inflammatory transcription factors (Hamalainen and others 2007), and activity of cyclooxygenase and lipooxygenase (Issa 2006), among others. [Pg.163]

Meanwhile, Wacker Chemie developed the palladium-copper-catalyzed oxidative hydration of ethylene to acetaldehyde. In 1965 BASF described a high-pressure process for the carbonylation of methanol to acetic acid using an iodide-promoted cobalt catalyst (/, 2), and then in 1968, Paulik and Roth of Monsanto Company announced the discovery of a low-pressure carbonylation of methanol using an iodide-promoted rhodium or iridium catalyst (J). In 1970 Monsanto started up a large plant based on the rhodium catalyst. [Pg.256]

A conveniently prepared amorphous silica-supported titanium catalyst exhibits activity similar to that of Ti-substituted zeolites in the epoxidation of terminal linear and bulky alkenes such as cyclohexene (22) <00CC855>. An unusual example of copper-catalyzed epoxidation has also been reported, in which olefins are treated with substoichiometric amounts of soluble Cu(II) compounds in methylene chloride, using MCPBA as a terminal oxidant. Yields are variable, but can be quite high. For example, cis-stilbene 24 was epoxidized in 90% yield. In this case, a mixture of cis- and /rans-epoxides was obtained, suggesting a step-wise radical mechanism <00TL1013>. [Pg.55]

The kinetic results reported by Jameson and Blackburn (11,12) for the copper catalyzed autoxidation of ascorbic acid are substantially different from those of Taqui Khan and Martell (6). The former could not reproduce the spontaneous oxidation in the absence of added catalysts when they used extremely pure reagents. These results imply that ascorbic acid is inert toward oxidation by dioxygen and earlier reports on spontaneous oxidation are artifacts due to catalytic impurities. In support of these considerations, it is worthwhile noting that trace amounts of transition metal ions, in particular Cu(II), may cause irreproducibilities in experimental work with ascorbic acid (13). While this problem can be eliminated by masking the metal ion(s), the masking agent needs to be selected carefully since it could become involved in side reactions in a given system. [Pg.403]

Sato, K., Akaike.T., Sawa, T., Miyamoto, Y., Suga, M., Ando, M., Maeda, H., Nitric oxide generation from hydroxyurea via copper-catalyzed... [Pg.280]

Another route involves a palladium-copper-catalyzed tandem carbon-carbon formation/cycloaddition sequence (Equation 12) <2005TL8531>. Notably, cycloadditions of azide to the internal alkynes failed under click chemistry reaction conditions <2003DDT1128>. Cyclization under oxidative conditions has been reported from dithioacetal 163 (Equation 13) <1996TL3925>. The formation of 164 as a single diastereoisomer has been explained by stereoelectronic effects. [Pg.934]

Scheme 8. General mechanism of the copper-catalyzed allylic oxidation of alkenes (Kharasch-Sosnovsky reaction). Scheme 8. General mechanism of the copper-catalyzed allylic oxidation of alkenes (Kharasch-Sosnovsky reaction).
Scheme 10. Results of proline-copper catalyzed allylic oxidation, prom (105).] X-ray crystal structure of (R.Sf-complex 146. [Adapted from (106).]... Scheme 10. Results of proline-copper catalyzed allylic oxidation, prom (105).] X-ray crystal structure of (R.Sf-complex 146. [Adapted from (106).]...

See other pages where Oxidation copper-catalyzed is mentioned: [Pg.451]    [Pg.451]    [Pg.390]    [Pg.33]    [Pg.109]    [Pg.67]    [Pg.239]    [Pg.55]    [Pg.168]    [Pg.226]    [Pg.228]    [Pg.210]    [Pg.174]    [Pg.417]    [Pg.791]    [Pg.793]    [Pg.836]    [Pg.658]    [Pg.738]    [Pg.652]    [Pg.428]    [Pg.316]    [Pg.526]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Copper oxidized

Oxidants copper

Oxidative coppering

Oxidic copper

© 2024 chempedia.info