Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation copper acetate catalysis

Activated alkanes, such as cyclohexanone, acetone, and aliphatic nitro compounds, can react with carbon dioxide even without metal catalysis. A typical example is the phenolate-catalyzed reaction of acetophenone with C02 to the corresponding carbon add. A catalytic conversion of the non-activated methane with C02 to give acetic acid was reported by Fujiwara and co-workers [72], The reaction was carried out in the presence of palladium and copper acetate and also stoichiometric amounts of the oxidant K2S208. [Pg.88]

Oxidation catalysts are either metals that chemisorb oxygen readily, such as platinum or silver, or transition metal oxides that are able to give and take oxygen by reason of their having several possible oxidation states. Ethylene oxide is formed with silver, ammonia is oxidized with platinum, and silver or copper in the form of metal screens catalyze the oxidation of methanol to formaldehyde. Cobalt catalysis is used in the following oxidations butane to acetic acid and to butyl-hydroperoxide, cyclohexane to cyclohexylperoxide, acetaldehyde to acetic acid and toluene to benzoic acid. PdCh-CuCb is used for many liquid-phase oxidations and V9O5 combinations for many vapor-phase oxidations. [Pg.2095]

The synthesis of phosphino sulfoximine 97 relied significantly on the successful development of methods pursued in parallel in our group. Whereas palladium-catalyzed cross-couplings between 53 and 98 proceeded in low yield, the copper catalysis with a combination of copper(l) iodide and cesium acetate worked well, affording 99 in up to 83% yield [78]. The resulting phosphine oxides 99 were then reduced to the corresponding phosphines 97 using a mixture of trichlorosilane and triethylamine (Scheme 2.1.1.33). [Pg.168]

Oestxeich found that the direct arylation of indolines could be accomplished without over oxidation to the corresponding indole under palladium-catalysis with air (open flask), oxygen (balloon), or copper(II) acetate as the oxidant. Indolines can be unsubstituted or substituted as C2/C3 and the reaction performs well on gram scale (250, 18 examples, 18—90% isolated yield) (140L6020).A directed C2-functionalization/C7-alkenylation was discovered by Xu,Yi, and colleagues. With a rhodium catalyst, indole derivatives were functionalized with acetates at C2 (22 examples, 62—92% yield) the newly obtained products could be alkenylated at C7 with a rhodium/copper system (251,3 examples, 68—78% yield) (14CC6483). [Pg.190]

Copper-iron-polyphthalocyanine [251,252] showed a specific catalysis for the oxidations of saturated aldehydes and substituted benzaldehydes with oxygen. The catalytic reaction was solvent dependent so that tetrahydrofuran, ethanol, acetonitrile, ethyl acetate and anisole inhibited benzaldehyde oxidation while oxidation occurred readily in benzene or acetone. Benzaldehyde was catalytically oxidized with copper-iron-polyphthalocyanine and oxygen to give a quantitative yield of a mixture of perbenzoic (61%) and benzoic (39%) acids. Reaction was carried out at 30 °C and atmospheric pressure of oxygen and exhibited no induction period. By contrast p-methyl and p-chlorobenzaldehyde had induction periods of 8 and 15 min respectively while no oxidation of p-substituted benzaldehydes was observed when the para-substituent was NO2, OH, OCH3, or N(CH3)2. [Pg.69]

Use of other nucleophiles in the presence of an oxidant can install other functionality (Scheme 3.55). While N-halosuccinimides are very effective, other systems, such as iodosobenzene diacetate-halide mixtures, or copper(II) halide salts can be employed. The powerful oxidant oxone can also be used in combination with alcohols, to give ethers (Scheme 3.56). Iodine acetate has been used for C-H activation directed by carboxylic acids (Scheme 3.57). The heteroatom may also be supplied intramolecularly (Scheme 3.58). The use of palladium catalysis can also override the inherent regioselectivity of an arene substrate (Scheme 3.59). [Pg.108]


See other pages where Oxidation copper acetate catalysis is mentioned: [Pg.56]    [Pg.171]    [Pg.248]    [Pg.269]    [Pg.373]    [Pg.417]    [Pg.580]    [Pg.914]    [Pg.374]    [Pg.148]    [Pg.914]    [Pg.1852]    [Pg.189]    [Pg.374]    [Pg.86]    [Pg.345]    [Pg.6519]    [Pg.580]    [Pg.264]    [Pg.5371]    [Pg.42]    [Pg.47]    [Pg.164]    [Pg.232]    [Pg.261]    [Pg.1178]    [Pg.128]   
See also in sourсe #XX -- [ Pg.126 ]




SEARCH



Acetalization-oxidation

Acetals oxidation

Acetate catalysis

Acetate oxidation

Acetic oxide

Copper acetate—

Copper catalysis oxidation

Copper oxidized

Copper-catalysis

Oxidants copper

Oxidation catalysis

Oxidative coppering

Oxides catalysis

Oxidic copper

© 2024 chempedia.info