Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation catalytic epoxidation

The reaction of olefin epoxidation by peracids was discovered by Prilezhaev [235]. The first observation concerning catalytic olefin epoxidation was made in 1950 by Hawkins [236]. He discovered oxide formation from cyclohexene and 1-octane during the decomposition of cumyl hydroperoxide in the medium of these hydrocarbons in the presence of vanadium pentaoxide. From 1963 to 1965, the Halcon Co. developed and patented the process of preparation of propylene oxide and styrene from propylene and ethylbenzene in which the key stage is the catalytic epoxidation of propylene by ethylbenzene hydroperoxide [237,238]. In 1965, Indictor and Brill [239] published studies on the epoxidation of several olefins by 1,1-dimethylethyl hydroperoxide catalyzed by acetylacetonates of several metals. They observed the high yield of oxide (close to 100% with respect to hydroperoxide) for catalysis by molybdenum, vanadium, and chromium acetylacetonates. The low yield of oxide (15-28%) was observed in the case of catalysis by manganese, cobalt, iron, and copper acetylacetonates. The further studies showed that molybdenum, vanadium, and... [Pg.415]

SMPO [styrene monomer propylene oxide] A process for making propylene oxide by the catalytic epoxidation of propylene. The catalyst contains a compound of vanadium, tungsten, molybdenum, or titanium on a silica support. Developed by Shell and operated in The Netherlands since 1978. [Pg.248]

The advantage of this mesoporous TS-1 over samples prepared by the conventional route is illustrated in Fig. 34. The two samples behave similarly for the oxidation of linear reactant oct-1-ene. But a marked difference was observed for the oxidation of bulkier cyclohexene. Because of the absence of diffusional constraints, the catalytic epoxidation activity in the mesoporous TS-1 enhanced by almost an order of magnitude for the oxidation of the bulkier cyclohexene. [Pg.86]

We emphasize that the above results have been observed only in the oxidation of sulfides and phenols, reactions known to follow radical mechanisms. A thorough investigation of the catalytic potential of the materials in other oxidation reactions (epoxidation, hydroxylations, etc.) is warranted. [Pg.120]

It is now clear that asymmetric catalytic hydrogenation is rather successful. However, the initial research work of Sharpless [5] in the asymmetric epoxidation, followed by the results of Jacobsen et al. [6] opened large opportunities for liquid-phase asymmetric oxidation. Sharpless epoxidation has been widely applied in bench-scale organic synthesis, and more recently, salene derivatives emerged among the most effective catalysts in this reaction [7,8],... [Pg.494]

Electrochemical oxidation of epoxides in absence of nucleophiles, catalyses a rearrangement to the carbonyl compound. The electrolyte for this process is dichlo-romethane with tetrabutylammonium perchlorate. Reaction, illustrated in Scheme 8.7, involves the initial formation of a radical-cation, then rearrangement to the ketone radical-cation, which oxidises a molecule of the substrate epoxide. The process is catalytic and requires only a small charge of electricity [73]. [Pg.275]

Bis(trifluoromethyl) peroxycarbonate, 705 Bis(trifluoromethyl) peroxydicarbonate, 705 Bis(trifluoromethyl) trioxide IR spectrum, 740 O NMR spectroscopy, 182 Bis(trifluoromethyl) tiioxydicarbonate, 740 Bis(trimethylsilyl) monoperoxysulfate Baeyer-Vilhger oxidation, 785 catalytic epoxidation, 791-2 Bis(trimethylsilyl) peroxide (BTSP) alcohol oxidation, 787-90 alkyne reactions, 800 aromatic compounds, 794-5 Baeyer-Vilhger ketone oxidation, 784-7 demethylation, 798... [Pg.1446]

ETS-10 shows no catalytic activity. This observation indicates that titanium in octahedral coordination in ETS-10 is not active for selective oxidation and epoxidation using either aqueous hydrogen peroxide or non-aqueous alkyl hydroperoxide as the oxidant. [Pg.279]

Catalytic Epoxidation of Olefins by Hydroperoxides Catalytic Oxidation of Olefins to Aldehydes... [Pg.11]

Many transition-metal complexes have been widely studied in their application as catalysts in alkene epoxidation. Nickel is unique in the respect that its simple soluble salts such as Ni(N03)2 6H20 are completely ineffective in the catalytic epoxidation of alkenes, whereas soluble manganese, iron, cobalt, or copper salts in acetonitrile catalyze the epoxidation of stilbene or substituted alkenes with iodosylbenzene as oxidant. However, the Ni(II) complexes of tetraaza macrocycles as well as other chelating ligands dramatically enhance the reactivity of epoxidation of olefins (90, 91). [Pg.123]

The catalytic epoxidation proceeds via the formation of peroxytungstic acid. Similarly, other metal catalysts are effective in the H2O2 oxidation. Aqueous conditions are not appropriate for epoxidations since epoxides are prone to undergo acid-catalyzed hydrolysis36. Polymer-anchored catalysts are conveniently separated from the reaction mixture after catalyzed H2O2 epoxidations (equation 8)9. [Pg.1227]

In a related study, Jorgensen has examined the regio- and enantioselective catalytic epoxidation of conjugated aliphatic dienes using achiral and chiral manganese salen complexes and sodium hypochlorite or iodosylbenzene as the terminal oxidant. For most substrates, the less substituted diene is epoxidized however, in the case of isoprene, the more highly substituted double bond is the more reactive. Jorgensen proposes an intermediate of type 11, the... [Pg.47]

Denmark has developed a practical dioxirane-mediated protocol for the catalytic epoxidation of alkenes, which uses Oxone as a terminal oxidant. The olefins studied were epoxidized in 83-96% yield. Of the many reaction parameters examined in this biphasic system, the most influential were found to be the reaction pH, the lipophilicity of the phase-transfer catalyst, and the counterion present. In general, optimal conditions feature 10 mol% of the catalyst l-dodecyl-l-methyl-4-oxopiperidinium triflate (30) and a pH 7.5-8.0 aqueous-methylene chloride biphasic solvent system [95JOC1391]. [Pg.50]

Another argument against the oxo-transfer mechanism in our catalytic aerobic oxidation protocol is the lack of formation of sulfoxides from sulfides, N-oxydes from amines and phosphine oxydes from phosphines. Alkenes also proved to be inert towards oxidation no epoxide formation could be detected under our reaction conditions. [Pg.238]

R. A. Johnson, K. B. Sharpless, Asymmetric Oxidation Catalytic Asymmetric Epoxidation of Allylic Alcohols, in Catalytic Asymmetric Synthesis (I. Ojima, Ed.), 103, VCH, New York, 1993. [Pg.155]


See other pages where Oxidation catalytic epoxidation is mentioned: [Pg.186]    [Pg.195]    [Pg.210]    [Pg.219]    [Pg.85]    [Pg.42]    [Pg.243]    [Pg.416]    [Pg.82]    [Pg.489]    [Pg.270]    [Pg.145]    [Pg.59]    [Pg.159]    [Pg.423]    [Pg.1476]    [Pg.417]    [Pg.327]    [Pg.776]    [Pg.376]    [Pg.269]    [Pg.185]    [Pg.57]    [Pg.232]    [Pg.144]    [Pg.359]    [Pg.243]    [Pg.55]    [Pg.98]    [Pg.358]   


SEARCH



CATALYTIC SELECTIVE OXIDATION cyclooctene epoxidation

Epoxidation catalytic

Epoxidation oxidant

Epoxidations, catalytic

Epoxide oxidation

Epoxides oxidation

© 2024 chempedia.info