Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation catalytic amount

C 0 04 Treatment of poly (vinylpyiidine) with OsO..206 Bis-hydroxylation of alkyl- and arylsubstituted olefins, as well as of a,p-unsat. esters, ketones or aliylic alcohols. In the presence of a sec. oxidant catalytic amounts of polymer-bound OSO4 are needed. Aldehydes from olefins by oxidative cleavage using simultaneously polymer-bound OSO4 and NalQj. O ... [Pg.64]

Oxidation of benzoin with concentrated nitric acid or by catalytic amounts of cupric salts in acetic acid solution, which are regenerated continuously by ammonium nitrate, yields the diketone benzil ... [Pg.709]

The first practical method for asymmetric epoxidation of primary and secondary allylic alcohols was developed by K.B. Sharpless in 1980 (T. Katsuki, 1980 K.B. Sharpless, 1983 A, B, 1986 see also D. Hoppe, 1982). Tartaric esters, e.g., DET and DIPT" ( = diethyl and diisopropyl ( + )- or (— )-tartrates), are applied as chiral auxiliaries, titanium tetrakis(2-pro-panolate) as a catalyst and tert-butyl hydroperoxide (= TBHP, Bu OOH) as the oxidant. If the reaction mixture is kept absolutely dry, catalytic amounts of the dialkyl tartrate-titanium(IV) complex are suflicient, which largely facilitates work-up procedures (Y. Gao, 1987). Depending on the tartrate enantiomer used, either one of the 2,3-epoxy alcohols may be obtained with high enantioselectivity. The titanium probably binds to the diol grouping of one tartrate molecule and to the hydroxy groups of the bulky hydroperoxide and of the allylic alcohol... [Pg.124]

The intramolecular oxidative earbonylation has wide synthetie applieation. The 7-lactone 247 is prepared by intramolecular oxycarbonylation of the alke-nediol 244 with a stoichiometric amount of Pd(OAc)2 under atmospheric pres-sure[223]. The intermediate 245 is formed by oxypalladation, and subsequent CO insertion gives the acylpalladium 246. The oxycarbonylation of alkenols and alkanediols can be carried out with a catalytic amount of PdCl2 and a stoichiometric amount of CuCb, and has been applied to the synthesis of frenolicin(224] and frendicin B (249) from 248[225]. The carbonylation of the 4-penten-l,3-diol 250, catalyzed by PdCl2 and CuCl2, afforded in the c -3-hydroxytetrahydrofuran-2-aeetie acid lactone 251[226J. The cyclic acetal 253 is prepared from the dienone 252 in the presence of trimethyl orthoformate as an accepter of water formed by the oxidative reaction[227]. [Pg.54]

In order to make these oxidative reactions of 1,3-dienes catalytic, several reoxidants are used. In general, a stoichiometric amount of benzoquinone is used. Furthermore, Fe-phthalocyanine complex or Co-salen complex is used to reoxidize hydroquinone to benzoquinone. Also, it was found that the reaction is faster and stereoselectivity is higher when (phenylsulflnyl)benzoquinone (383) is used owing to coordination of the sulfinyl group to Pd, Thus the reaction can be carried out using catalytic amounts of PdfOAcji and (arylsulfinyl)benzoquinone in the presence of the Fe or Co complex under an oxygen atmosphere[320]. Oxidative dicyanation of butadiene takes place to give l,4-dicyano-2-butene(384) (40%) and l,2-dicyano-3-butene (385)[32l]. [Pg.73]

Acetoxybenzene is prepared by the reaction of benzene with Pd(OAc)2[325,342-345], This reaction is regarded as a potentially useful method for phenol production from benzene, if carried out with only a catalytic amount of Pd(OAc)2. Extensive studies have been carried out on this reaction in order to achieve a high catalytic turnover. In addition to oxygen and Cu(II) salts, other oxidants, such as HNOi, nitrate[346,347], potassium peroxodisulfate[348], and heteropoly acids[349,3S0], are used. HNO is said to... [Pg.76]

The oxidative coupling of toluene using Pd(OAc)2 via />-tolylmercury(II) acetate (428) forms bitolyl[384]. The aryl-aryl coupling proceeds with copper and a catalytic amount of PdCl2 in pyridine[385]. Conjugated dienes are obtained by the coupling of alkenylmercury(II) chlorides[386]. [Pg.82]

Oxidative cleavage of the complex 549 with CuCri affords 2,3-bis(chloro-methyl)-1,3-butadiene (550) and regenerates PdCri. Thus the preparation of this interesting dimerization product 550 can be carried out with a catalytic amount of PdCl2 and two equivalents of CuCb in MeCN[495], Similarly, treatment of allene with PdBr2 affords the dimeric complex 551. Treatment of this complex with 2 equiv, of bromine yields the dibromide 552. The tetra-bromide 553 is obtained by the reaction of an excess of bromine[496]. Similarly,... [Pg.102]

Alcohols are oxidized slowly with PdCh. Oxidation of secondary alcohols to ketones is carried out with a catalytic amount of PdCh under an oxygen atmo-sphere[73.74]. Also, selective oxidation of the allylic alcohol 571 without attacking saturated alcohols is possible with a stoichiometric amount of PdfOAc) in aqueous DMF (1% H OifSll],... [Pg.105]

Several Pd(0) complexes are effective catalysts of a variety of reactions, and these catalytic reactions are particularly useful because they are catalytic without adding other oxidants and proceed with catalytic amounts of expensive Pd compounds. These reactions are treated in this chapter. Among many substrates used for the catalytic reactions, organic halides and allylic esters are two of the most widely used, and they undergo facile oxidative additions to Pd(0) to form complexes which have o-Pd—C bonds. These intermediate complexes undergo several different transformations. Regeneration of Pd(0) species in the final step makes the reaction catalytic. These reactions of organic halides except allylic halides are treated in Section 1 and the reactions of various allylic compounds are surveyed in Section 2. Catalytic reactions of dienes, alkynes. and alkenes are treated in other sections. These reactions offer unique methods for carbon-carbon bond formation, which are impossible by other means. [Pg.125]

Alkoxythiazoles are prepared by heterocyclization (274, 462). The Williamson method using catalytic amounts of KI and cupric oxide is also possible (278. 288, 306). 5-Acetoxy-4-alkenylthiazoles are obtained by treatment of 242 with acetyl chloride and triethylamine or with acetic anhydride and pyridine (450). Similarly, the reaction of diphenylketene with 242 affords 5-acyloxy-4-alkenylthiazoles (243) (Scheme 120) (450). The readiness of these o-acetylations suggests that 4-alkylidene thiazoline-5-one might be in equilibrium with 4-alkenyl-5-hydroxythiazoles (450). [Pg.436]

Moderate yields of acids and ketones can be obtained by paHadium-cataly2ed carbonylation of boronic acids and by carbonylation cross-coupling reactions (272,320,321). In an alternative procedure for the carbonylation reaction, potassium trialkylborohydride ia the presence of a catalytic amount of the free borane is utilized (322). FiaaHy, various tertiary alcohols including hindered and polycycHc stmctures become readily available by oxidation of the organoborane iatermediate produced after migration of three alkyl groups (312,313,323). [Pg.318]

Garbodiimide Formation. Carbodiimide formation has commercial significance in the manufacture of Hquid MDI. Heating of MDI in the presence of catalytic amounts of phosphine oxides or alkyl phosphates leads to partial conversion of isocyanate into carbodiimide (95). The carbodiimide (39) species reacts with excess isocyanate to form a 2 + 2cycloaddition product. The presence of this product in MDI leads to a melting point depression and thus a mixture which is Hquid at room temperature. [Pg.456]

The Perkin reaction is of importance for the iadustrial production of coumarin and a number of modifications have been studied to improve it, such as addition of a trace of iodine (46) addition of oxides or salts of metals such as iron, nickel, manganese, or cobalt (47) addition of catalytic amounts of pyridine (48) or piperidine (49) replacement of sodium acetate by potassium carbonate (50,51) or by cesium acetate (52) and use of alkaU metal biacetate... [Pg.321]

In spirooxaziridines like (114), /3-scission proceeds with ring opening. Stoichiometric amounts of iron(II) salt in acidic solution lead to the dicarboxylic acid derivative (115). The radical undergoes some interesting reactions with added unsaturated compounds. For example, pyridine yields a mixture of 2- and 4-alkylation products in 80% yield. Catalytic amounts of iron(II) ion are sufficient here since the adduct of the radical with pyridine is oxidized by iron(III) ion to the final product (116), thus regenerating iron(II) ion (68TL5609). [Pg.211]

Use of DMF as a solvent for the oxidation of l-o1efins has been reported by Clement and Selwitz. The method requires only a catalytic amount of PdCl2 and gives satisfactory yields under mild conditions. A small amount of olefin migration product is the only noticeable contaminant in the cases reported. The procedure can be applied satisfactorily to various 1-olefins with other functional groups. This useful synthetic method for the preparation of methyl ketones has been applied extensively in the syntheses of natural products such as steroids,macrolides, dihydrojasmone, and muscone. " A comprehensive review article on the palladium-catalyzed oxidation of olefins has... [Pg.11]

Similar hydroxylation-oxidations can be carried out using a catalytic amount of osmium tetroxide with A-methylmorpholine oxide-hydrogen peroxide or phenyliodosoacetate." A recent patent describes the use of triethylamine oxide peroxide and osmium tetroxide for the same sequence. Since these reactions are of great importance for the preparation of the di-hydroxyacetone side-chain of corticoids, they will be discussed in a later section. [Pg.184]

Oxidative rearrangement of 5a-cholestan-3-one (62) with hydrogen peroxide and a catalytic amount of selenic acid affords 2a-carboxy-A-nor-5a-cholestane, isolated in about 35 % yield as the methyl ester (63)." However, the reaction gives a complex mixture of A-nor- and seco-acids, and under... [Pg.427]

The Jacobsen-Katsuki epoxidation reaction is an efficient and highly selective method for the preparation of a wide variety of structurally and electronically diverse chiral epoxides from olefins. The reaction involves the use of a catalytic amount of a chiral Mn(III)salen complex 1 (salen refers to ligands composed of the N,N -ethylenebis(salicylideneaminato) core), a stoichiometric amount of a terminal oxidant, and the substrate olefin 2 in the appropriate solvent (Scheme 1.4.1). The reaction protocol is straightforward and does not require any special handling techniques. [Pg.29]


See other pages where Oxidation catalytic amount is mentioned: [Pg.128]    [Pg.23]    [Pg.65]    [Pg.98]    [Pg.104]    [Pg.250]    [Pg.510]    [Pg.524]    [Pg.545]    [Pg.99]    [Pg.241]    [Pg.480]    [Pg.179]    [Pg.327]    [Pg.330]    [Pg.438]    [Pg.420]    [Pg.426]    [Pg.144]    [Pg.311]    [Pg.334]    [Pg.107]    [Pg.151]    [Pg.177]    [Pg.207]    [Pg.249]    [Pg.965]    [Pg.40]    [Pg.365]    [Pg.287]    [Pg.289]    [Pg.127]   
See also in sourсe #XX -- [ Pg.2 , Pg.205 ]




SEARCH



Catalytic amount

© 2024 chempedia.info