Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidants alkene precursors

The rate-determining step in catalytic osmylations is usually the oxidation of the osmium(VI) esters 2 or 735t 37. Depending on the steric requirements of the alkene precursor, the trioxo(l,2-diolato)osmate(VIII) 4, formed in the amine TV-oxide promoted catalytic osmylation, can be further transformed following two different pathways. [Pg.58]

The synthesis of cryptophycin 52 was accomplished by E.D. Moher et al. using the Shi epoxidation as the key step to install the epoxide moiety diastereoselectively. In the previous syntheses of this moiecuie, the epoxide moiety was always introduced in the last step, using common oxidants such as mCPBA or DMD, and with poor diastereoselectivity. Interestingly, the usual alkene precursor was a very poor substrate for the Shi epoxidation, so an earlier intermediate was subjected to the epoxidation conditions in which the pH was very carefully controlled. The desired epoxide was obtained as a 6.5 1 mixture of diastereomers. [Pg.411]

Wynberg and co-workers have prepared helicenes composed of fused thiophene and benzene units from the photocyclization of alkene precursors [134], It was shown that the effect of substituting thiophenes for benzene rings in these structures led to a blue shift of the absorption maxima. Compound 61 can be converted to the circulene structure 62 in two steps and the latter compound represents another interesting class of fused thiophene stmctures [135]. Trithiophenes with a benzene core (63) can be prepared from diacetylene-fimctionalized bithiophenes via a five-coordinate rhodium(I) intermediate by the addition of elemental sulfur [136]. A related structure (64) was reported by Pei et al. [137], along with the elaborate helicene 65. The compounds were constracted via oxidative (FeCb) cyclization reactions of 1,2-dithienyl benzene derivatives. [Pg.245]

An advantage of the method is that it allows the synthesis of epoxides unobtainable by the oxidation of alkene precursors with peroxides or peracids due to the incompatibility of functional groups with these reagents. [Pg.214]

The 7, i5-unsaturated alcohol 99 is cyclized to 2-vinyl-5-phenyltetrahydro-furan (100) by exo cyclization in aqueous alcohol[124]. On the other hand, the dihydropyran 101 is formed by endo cyclization from a 7, (5-unsaturated alcohol substituted by two methyl groups at the i5-position. The direction of elimination of /3-hydrogen to give either enol ethers or allylic ethers can be controlled by using DMSO as a solvent and utilized in the synthesis of the tetronomycin precursor 102[125], The oxidation of the optically active 3-alkene-l,2-diol 103 affords the 2,5-dihydrofuran 104 in high ee. It should be noted that /3-OH is eliminated rather than /3-H at the end of the reac-tion[126]. [Pg.35]

With this reaction, two new asymmetric centers can be generated in one step from an achiral precursor in moderate to good enantiomeric purity by using a chiral catalyst for oxidation. The Sharpless dihydroxylation has been developed from the earlier y -dihydroxylation of alkenes with osmium tetroxide, which usually led to a racemic mixture. [Pg.257]

Nitro compounds have been converted into various cyclic compounds via cycloaddidon reactions. In particular, nitroalkenes have proved to be nsefid in Diels-Alder reactions. Under thermal conditions, they behave as electron-deficient alkenes ind react v/ith dienes to yield 3-nitrocy-clohexenes. Nitroalkenes c in also act as heterodienes ind react v/ith olefins in the presence of Lewis acids to yield cyclic alkyl nkronates, which undergo [3- 2 cycloaddidon. Nitro compounds are precursors for nitnie oxides, alkyl nitronates, and trialkylsilyl nitronates, which undergo [3- 2 cycloaddldon reacdons. Thus, nitro compounds play important roles in the chemistry of cycloaddidon reacdons. In this chapter, recent developments of cycloaddinon chemistry of nitro compotmds and their derivadves are summarized. [Pg.231]

Strategy What is an immediate precursor of a primary alcohol " Perhaps a terminal alkene, which could be hydrated with non-Markovnikov regiochemistiy by reaction with borane Followed by oxidation with H2O2-... [Pg.277]

This synthetic approach is known from the synthesis of L M(alkene)H compounds from LnM(CO)alkane precursors and can easily be applied to the analogous silyl complexes. The Si—H bond even shows an increased activity for oxidative addition reactions [42, 43]. [Pg.38]

Triazoline imino sugar derivatives 297 that are prospective glycosidase inhibitors have been prepared as single diastereomers in high yield via an lAOC reaction of in situ generated azido alkene 296 (Eq. 32) [78]. m-CPBA oxidation of the dithioacetal groups in the 0-acetylated 5-azido-5-deoxydibenzyl dithio-acetal of o-xylose or D-ribose 294 to the bis-sulfone 295, followed by loss of HOAc between C-1 and C-2 provided the lAOC precursor 296. [Pg.42]

Treatment of 51 with an excess of sodium benzoate in DMF resulted in substitution and elimination, to yield the cyclohexene derivative (228, 36%). The yield was low, but 228 was later shown to be a useful compound for synthesis of carba-oligosaccharides. <9-Deacylation of228 and successive benzylidenation and acetylation gave the alkene 229, which was oxidized with a peroxy acid to give a single epoxide (230) in 60% yield. Treatment of 230 with sodium azide and ammonium chloride in aqueous 2-methoxyeth-anol gave the azide (231,55%) as the major product this was converted into a hydroxyvalidamine derivative in the usual manner. On the other hand, an elimination reaction of the methanesulfonate of 231 with DBU in toluene gave the protected precursor (232, 87%) of 203. [Pg.56]

The platinum(0) complex [Pt(PhNO)(PPh3)2] reacts with C02 to afford the metallacyclic nitroso species [Pt 0N(Ph)C(0)0 (PPh3)2] (60), the first example of insertion of C02 into a Pt—N bond.186 Other unsaturated carbon compounds such as CS2 and electrophilic alkenes and alkynes react similarly. The diradical peril uoro-/V,/V -dimethylethane-l,2-bis(amino-oxyl) reacts readily by oxidative addition to the platinum(0) precursor Pt(PPh3)4 to afford the corresponding platinum(lI)-nitroso complex containing a seven-membered chelate ring (61). The resulting complex is stable in air for several days at room temperature.187... [Pg.698]

Primary nitro compounds are good precursors for preparing nitriles and nitrile oxides (Eq. 6.31). The conversion of nitro compounds into nitrile oxides affords an important tool for the synthesis of complex natural products. Nitrile oxides are reactive 1,3-dipoles that form isoxazolines or isoxazoles by the reaction with alkenes or alky nes, respectively. The products are also important precursors for various substrates such as P-amino alcohols, P-hydroxy ketones, P-hydroxy nitriles, and P-hydroxy acids (Scheme 6.3). Many good reviews concerning nitrile oxides in organic synthesis exist some of them are listed here.50-56 Applications of organic synthesis using nitrile oxides are discussed in Section 8.2.2. [Pg.167]

As discussed in Section 6.2, nitro compounds are good precursors of nitrile oxides, which are important dipoles in cycloadditions. The 1,3-dipolar cycloaddition of nitrile oxides with alkenes or alkynes provides a straightforward access to 2-isoxazolines or isoxazoles, respectively. A number of ring-cleaving procedures are applicable, such that various types of compounds may be obtained from the primary adducts (Scheme 8.18). There are many reports on synthetic applications of this reaction. The methods for generation of nitrile oxides and their reactions are discussed in Section 6.2. Recent synthetic applications and asymmetric synthesis using 1,3-dipolar cycloaddition of nitrile oxides are summarized in this section. [Pg.258]

This scheme can be extended by using mixtures of dienes with electron-deficient alkenes such as acrylonitrile. Due to its nucleophilic nature, addition of radical 68 to acrylonitrile is faster than addition to butadiene. The resulting ambiphilic adduct radical then adds to butadiene to form a relatively unreactive allyl radical. Oxidation and trapping of the allyl cation by methanol lead, as before, to products such as 72 and 73, which are composed of four components the radical precursor 67, acrylonitrile, butadiene and methanol (equation 30)17,94. [Pg.648]

Macrocycles containing isoxazoline or isoxazole ring systems, potential receptors in host—guest chemistry, have been prepared by multiple (double, triple or quadruple) 1,3-dipolar cycloadditions of nitrile oxides, (prepared in situ from hydroxamoyl chlorides) to bifunctional calixarenes, ethylene glycols, or silanes containing unsaturated ester or alkene moieties (453). This one-pot synthetic method has been readily extended to the preparation of different types of macrocycles such as cyclophanes, bis-calix[4]arenes and sila-macrocycles. The ring size of macrocycles can be controlled by appropriate choices of the nitrile oxide precursors and the bifunctional dipolarophiles. Multiple cycloadditive macrocy-clization is a potentially useful method for the synthesis of macrocycles. [Pg.90]

New isoxazoline derivatives of a-tocopherol, the main component of vitamin E, have been synthesized in a facile, two-step sequence consisting of nitration followed by 1,3-dipolar cycloaddition. 5-Nitromethyl-a-tocopheryl acetate, obtained from a-tocopheryl acetate by direct nitration in one step, act as the nitrile oxide precursor in the reaction with various alkenes. The facile conversion proceeds in the presence of equimolar amounts of PhNCO and catalytic amounts of triethylamine to give isoxazolines, 446 (489). [Pg.99]


See other pages where Oxidants alkene precursors is mentioned: [Pg.571]    [Pg.571]    [Pg.126]    [Pg.219]    [Pg.281]    [Pg.36]    [Pg.214]    [Pg.214]    [Pg.153]    [Pg.157]    [Pg.402]    [Pg.402]    [Pg.214]    [Pg.128]    [Pg.422]    [Pg.152]    [Pg.11]    [Pg.167]    [Pg.3]    [Pg.46]    [Pg.93]    [Pg.95]    [Pg.26]    [Pg.158]    [Pg.711]    [Pg.75]    [Pg.11]    [Pg.251]    [Pg.142]    [Pg.25]   


SEARCH



Alkenes oxidant

Alkenes precursor

Alkenes, oxidative

Oxide precursors

© 2024 chempedia.info