Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Outer/inner-sphere complexing

For kaolinite the sample permeability was very low and the solution was poorly removed. The spectra (Figure 3C) are consequently complex, containing peaks for inner and outer sphere complexes, CsCl precipitate from resMual solution (near 200 ppm) and a complex spinning sideband pattern. Spectral resolution is poorer, but at 70% RH for instance, inner sphere complexes resonate near 16 ppm and outer sphere complexes near 31 ppm. Dynamical averaging of the inner and outer sphere complexes occurs at 70% RH, and at 100% RH even the CsCl precipitate is dissolved in the water film and averaged. [Pg.163]

For illite and kaolinite with decreasing solution concentration (Figure 5) there are two important changes. The relative intensity for inner sphere complexes increases, and the chemical shifts become substantially less positive or more negative due to the reduced Cs/water ratio, especially for the outer sphere complexes. Washing with DI water removes most of the Cs in outer sphere complexes and causes spectral changes parallel to those caused by decreasing solution concentration (data not shown). [Pg.164]

The surface behavior of Na is similar to that of Cs, except that inner sphere complexes are not observed. Although Na has the same charge as Cs, it has a smaller ionic radius and thus a larger hydration energy. Conseguently, Na retains its shell of hydration waters. For illite (Figure 6), outer sphere complexes resonate between -7.7 and -1.1 ppm and NaCl... [Pg.164]

Differentiation between inner- and outer-sphere complexes may be possible on the basis of determination of activation volumes of dediazoniations catalyzed by various metal complexes, similar to the differentiation between heterolytic and homolytic dediazoniations in DMSO made by Kuokkanen, 1989 (see Sec. 8.7). If outer-sphere complexes are involved in a dediazoniation, larger (positive) volumes of activation are expected than those for the comparable reactions with inner-sphere complexes. Such investigations have not been made, however, so far as we are aware. [Pg.197]

Fig. 5. A model for S042- substitution on [Be(H20)4]2+ proceeding from the outer-sphere complex on the left through the transition state at center to the inner-sphere complex at the right of the figure (16, 66). Fig. 5. A model for S042- substitution on [Be(H20)4]2+ proceeding from the outer-sphere complex on the left through the transition state at center to the inner-sphere complex at the right of the figure (16, 66).
It is important to distinguish between outer-sphere and inner-sphere complexes. In inner-sphere complexes the surface hydroxyl groups act as o-donor ligands which increase the electron density of the coordinated metal ion. Cu(II) bound inner-... [Pg.22]

Surface complex formation of an ion (e.g., cation) on the hydrous oxide surface. The ion may form an inner-sphere complex ("chemical bond"), an outer-sphere complex (ion pair) or be in the diffuse swarm of the electric double layer. (From Sposito, 1989)... [Pg.23]

Fig. b shows a schematic portrayal of the hydrous oxide surface, showing planes associated with surface hydroxyl groups ("s"), inner-sphere complexes ("a"), outer-sphere complexes ("P") and the diffuse ion swarm ("d"). (Modified from Sposito, 1984)... [Pg.23]

We can simplify by considering that k.- k.w, and by setting k k-i = Kos. Kos is the equilibrium constant of the outer sphere complex. For the rate of the formation of MeLJ2 n)+ inner-sphere complex (now written without water), we have... [Pg.99]

The separation of the two stages is easier to discern when the rates of the two processes are so different, but it can also be seen in the ultrasonic spectra of metal-sulfate systems (Sec. 3.4.4). Ultrasonic absorption peaks can be attributed to formation of outer-sphere complexes (at higher frequency, shorter t) and collapse of outer-sphere to inner-sphere complexes (at lower frequency). In addition to uv spectral and ultrasonic detection, polarimetry and nmr methods have also been used to monitor and measure the strength of the interaction. There are difficulties in assessing the value of ATq, the outer-sphere formation constant. The assemblage that registers as an ion pair by conductivity measurements may show a blank spectroscopically. The value of Aq at T" K may be estimated using theoretically deduced expres-... [Pg.206]

There are a number of more loosely defined terms for different types of adsorption that are related to the form of surface complexation. Specifically adsorbed ions are held in inner-sphere complexes whereas non-specifically adsorbed ions are in outer-sphere complexes or the diffuse-ion swarm. Readily exchangeable... [Pg.77]

Complexation reactions are assumed to proceed by a mechanism that involves initial formation of a species in which the cation and the ligand (anion) are separated by one or more intervening molecules of water. The expulsion of this water leads to the formation of the inner sphere complex, in which the anion and cation are in direct contact. Some ligands cannot displace the water and complexation terminates with the formation of the outer sphere species, in which the cation and anion are separated by a molecule of water. Metal cations have been found to form stable inner and outer sphere complexes and for some ligands both forms of complexes may be present simultaneously. [Pg.113]

Often, it is difficult to distinguish definitely between inner sphere and outer sphere complexes in the same system. Based on the preceding discussion of the thermodynamic parameters, AH and AS values can be used, with cation, to obtain insight into the outer vs. inner sphere nature of metal complexes. For inner sphere complexation, the hydration sphere is disrupted more extensively and the net entropy and enthalpy changes are usually positive. In outer sphere complexes, the dehydration sphere is less disrupted. The net enthalpy and entropy changes are negative due to the complexation with its decrease in randomness without a compensatory disruption of the hydration spheres. [Pg.113]

These considerations lead, for example, to the assignment of a predominantly outer sphere character to Cl, Br, F, CIO3, NO3, sulfonate, and trichloro-acetate complexes and an inner sphere character to F", IO3, SO, and acetate complexes of trivalent actinides and lanthanides. The variation in AH° and AS° of complexation of related ligands indicates that those whose pA), values are <2 form predominantly outer sphere complexes, while those for whom > 2 form predominantly inner sphere complexes with the trivalent lanthanides and actinides. As the pK increases above 2, increasing predominance of inner sphere complexation is expected for these metals. [Pg.113]

An inner-sphere complex is formed between Lewis acids and bases, while an outer-sphere complex involves a water molecule interposed between the acid and the base. A hard Lewis acid is a molecular unit of small size, high oxidation state, high electronegativity, and low polarizability whereas a soft Lewis acid is a molecular unit of relatively large size, characterized by low oxidation state, low electronegativity, and high polarizability. Based on this characterization, hard bases prefer to complex hard acids, and soft bases prefer to complex soft acids, under similar conditions of acid-base strength. [Pg.132]

Adsorption of ferricyanide (a contaminant of sites of former gas plants) on goethite decreases with rising pH and is dependent on ionic strength it is fully reversible and is thought to involve both inner and outer sphere complexes. Adsorption of ferrocyanide on goethite involves initial formation of inner sphere complexes followed by precipitation of a Berlin Blue-like phase on the goethite surface (Rennert and Mansfeldt, 2001). [Pg.273]

This account is concerned with the rate and mechanism of the important group of reactions involving metal complex formation. Since the bulk of the studies have been performed in aqueous solution, the reaction will generally refer, specifically, to the replacement of water in the coordination sphere of the metal ion, usually octahedral, by another ligand. The participation of outer sphere complexes (ion pair formation) as intermediates in the formation of inner sphere complexes has been considered for some time (122). Thermodynamic, and kinetic studies of the slowly reacting cobalt(III) and chromium(III) complexes (45, 122) indicate active participation of outer sphere complexes. However, the role of outer sphere complexes in the reactions of labile metal complexes and their general importance in complex formation (33, 34, 41, 111) had to await modern techniques for the study of very rapid reactions. Little evidence has appeared so far for direct participation of the... [Pg.54]

Macroscopic experiments allow determination of the capacitances, potentials, and binding constants by fitting titration data to a particular model of the surface complexation reaction [105,106,110-121] however, this approach does not allow direct microscopic determination of the inter-layer spacing or the dielectric constant in the inter-layer region. While discrimination between inner-sphere and outer-sphere sorption complexes may be presumed from macroscopic experiments [122,123], direct determination of the structure and nature of surface complexes and the structure of the diffuse layer is not possible by these methods alone [40,124]. Nor is it clear that ideas from the chemistry of isolated species in solution (e.g., outer-vs. inner-sphere complexes) are directly transferable to the surface layer or if additional short- to mid-range structural ordering is important. Instead, in situ (in the presence of bulk water) molecular-scale probes such as X-ray absorption fine structure spectroscopy (XAFS) and X-ray standing wave (XSW) methods are needed to provide this information (see Section 3.4). To date, however, there have been very few molecular-scale experimental studies of the EDL at the metal oxide-aqueous solution interface (see, e.g., [125,126]). [Pg.474]

The equilibria considered up to now have all involved inner sphere complexes. There is the possibility that an inner sphere complex may react with free ligands in solution this includes the solvent itself, to give an outer sphere complex where the ligand enters the secondary solvation shell of the inner sphere complex. If the two species involved in this type of interaction are of opposite sign, which is the situation where this type of complex formation is expected to be most effective, the outer sphere complex is called an ion pair. Fuoss65 has derived an expression (equation 38) for the ion pair formation constant, XIP, from electrostatic arguments ... [Pg.517]

Spin-spin relaxation (time T2) can result from both intermolecular homo-nuclear exchange coupling and dipole-dipole interactions, but only the latter is observable at Mn2+ concentrations <10-2 M. Mn2+ forms both inner- and outer-sphere complexes. In symmetrical inner-sphere complexes like Mn(H20)62+, the spin-spin coupling is strongly forbidden, T2 is long, and lines remain narrow. When nonsymmetric inner-sphere complexes form, the resulting anisotropy of the electric field leads to allowed spin-spin transitions that produce very small values of T2 and very broad, perhaps even unobservable, lines (56). [Pg.501]


See other pages where Outer/inner-sphere complexing is mentioned: [Pg.163]    [Pg.164]    [Pg.227]    [Pg.7]    [Pg.131]    [Pg.42]    [Pg.23]    [Pg.28]    [Pg.120]    [Pg.332]    [Pg.206]    [Pg.77]    [Pg.218]    [Pg.187]    [Pg.271]    [Pg.272]    [Pg.273]    [Pg.286]    [Pg.54]    [Pg.549]    [Pg.644]    [Pg.472]    [Pg.485]    [Pg.39]    [Pg.269]    [Pg.501]    [Pg.507]    [Pg.454]    [Pg.454]   
See also in sourсe #XX -- [ Pg.484 ]




SEARCH



Complex inner-sphere complexes

Complex outer-sphere complexes

Distinguishing between inner- and outer-sphere complexes

Inner sphere

Inner-sphere complex

Outer sphere

Outer sphere complex

Outer sphere complexation

Outer- versus inner-sphere complexes

Outer-sphere inner

Sphere complexation, inner outer

Sphere complexation, inner outer

© 2024 chempedia.info