Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protonation, osmium

The C—C double bond in the cyclopentene ring can be cleaved by the osmium tetroxide-periodate procedure or by photooxygenation. The methoxalyl group on C-17 can, as a typical a-dicarbonyl system, be split off with strong base and is replaced by a proton. Since this elimination occurs with retention of the most stable configuration of the cyclization equi-hbrium, the substituents at C-17 and C-18 are located trans to one another. The critical introduction of both hydrogens was thus achieved regio- and stereoselectively. [Pg.259]

Diazoalkanes are u.seful is precursors to ruthenium and osmium alkylidene porphyrin complexes, and have also been investigated in iron porphyrin chemistry. In an attempt to prepare iron porphyrin carbene complexes containing an oxygen atom on the /(-carbon atom of the carbene, the reaction of the diazoketone PhC(0)C(Ni)CH3 with Fe(TpCIPP) was undertaken. A low spin, diamagnetic carbene complex formulated as Fe(TpCIPP)(=C(CH3)C(0)Ph) was identified by U V-visible and fI NMR spectroscopy and elemental analysis. Addition of CF3CO2H to this rapidly produced the protonated N-alkyl porphyrin, and Bit oxidation in the presence of sodium dithionitc gave the iron(II) N-alkyl porphyrin, both reactions evidence for Fe-to-N migration processes. ... [Pg.262]

The porphyrin ligands in the diamagnetic ruthenium and osmium carbene complexes generally exhibit four-fold symmetry by NMR, indicating that the barrier to rotation about the M=C bond is low. The carbenoid protons appear shifted down-field in the H NMR spectra, for example appearing for Ru(TTP)=CHC02Et and Ru(TTP)=CHSiMc3 at 13.43 and 19.44 ppm, respectively, and for the osmium... [Pg.275]

A ruthenium porphyrin hydride complex was lirst prepared by protonation of the dianion, [Ru(TTP) in THF using benzoic acid or water as the proton source. The diamagnetic complex, formulated as the anionic Ru(If) hydride Ru(TTP)(H )(THF)l , showed by H NMR spectroscopy that the two faces of the porphyrin were not equivalent, and the hydride resonance appeared dramatically shifted upheld to —57.04 ppm. The hydride ligand in the osmium analogue resonates at —66.06 ppm. Reaction of [Ru(TTP)(H)(THF)j with excess benzoic-acid led to loss of the hydride ligand and formation of Ru(TTP)(THF)2. [Pg.278]

This proton transfer reaction is not fast, and it is suggested that this may be a more complicated reaction than was anticipated, perhaps occurring by initial addition of OH or OR to the metal followed by H2O or ROH expulsion. In support of this is the isolation of a complex Os(CO)-(CNC6H4CH3)(PPh3)2(H)OR from an analogous reaction sequence. (This is the only reference yet to any osmium carbonyl-isocyanide chemistry.)... [Pg.62]

Many carbonyl and carbonyl metallate complexes of the second and third row, in low oxidation states, are basic in nature and, for this reason, adequate intermediates for the formation of metal— metal bonds of a donor-acceptor nature. Furthermore, the structural similarity and isolobal relationship between the proton and group 11 cations has lead to the synthesis of a high number of cluster complexes with silver—metal bonds.1534"1535 Thus, silver(I) binds to ruthenium,15 1556 osmium,1557-1560 rhodium,1561,1562 iron,1563-1572 cobalt,1573 chromium, molybdenum, or tungsten,1574-1576 rhe-nium, niobium or tantalum, or nickel. Some examples are shown in Figure 17. [Pg.988]

The formation of these compounds has been rationalized according to Scheme 6. The reaction of Os (E )-CH=C 11 Ph C1 (C())( P Pr3)2 with n-BuLi involves replacement of the chloride anion by a butyl group to afford the intermediate Os (/i> CH=CHPh ( -Bu)(CO)(P Pr3)2, which by subsequent hydrogen (3 elimination gives OsH ( >CI I=CHPh (CO)( P Pr3)2. The intramolecular reductive elimination of styrene from this compound followed by the C—H activation of the o-aryl proton leads to the hydride-aryl species via the styrene-osmium(O) intermediate Os r 2-CH2=CHPh (CO)(P Pr3)2. In spite of the fact that the hydride-aryl complex is the only species detected in solution, the formation of OsH ( )-CH=CHPh L(CO)(P Pr3)2 and 0s ( )-CH=CHPh (K2-02CH)(C0)(P,Pr3)2 suggests that in solution the hydride-aryl complex is in equilibrium with undetectable concentrations of OsH ( )-CH=CHPh (CO)(P,Pr3)2. This implies that the olehn-osmium(O) intermediate is easily accessible and can give rise to activation reactions at both the olefinic and the ortho phenyl C—H bonds of the... [Pg.9]

Protonation of 12 yields a compound best described as a face-protonated methylidyne complex, the tungsten-carbon bond length lying in the range observed for a triple bond (28). Protonation of the osmium compound 13 yields a true carbene complex, which for R = Ph has been characterized by X-ray crystallography (see Sections IV and VI). [Pg.133]

The osmium formimidoyl 16 is reversibly protonated to a secondary carbene complex (44) ... [Pg.135]

Cofacial ruthenium and osmium bisporphyrins proved to be moderate catalysts (6-9 turnover h 1) for the reduction of proton at mercury pool in THF.17,18 Two mechanisms of H2 evolution have been proposed involving a dihydride or a dihydrogen complex. A wide range of reduction potentials (from —0.63 V to —1.24 V vs. SCE) has been obtained by varying the central metal and the carbon-based axial ligand. However, those catalysts with less negative reduction potentials needed the use of strong acids to carry out the catalysis. These catalysts appeared handicapped by slow reaction kinetics. [Pg.475]

The unsubstituted pyrrolo[l,2-f]oxazol-3-one 295 underwent a dihydroxylation with catalytic osmium tetroxide to exclusively give diol 296. This diol resulted from attack of the oxidizing agent from the concave face of the molecule due to the pseudoaxial protons that sterically hinder the /3-face to be attacked by the osmium reagent (Equation 51) <2004AJC669>. [Pg.84]

Both the 1 1 and the 1 2 bonded alkenes should show structural isomers, with, for the ethylene adduct, nonequivalence of the two protons bonded to the carbon. For substituted olefins, it is often possible to detect the presence of both isomeric forms, especially with the osmium derivatives. However, all these molecules are fluxional and the flux-... [Pg.281]

The infrared, NMR, and electronic absorption spectra of the two complexes H2FeRu2Os(CO)i3 and H2FeRuOs2(CO)13 have been taken to indicate a structure for these compounds similar to H2FeRu3(CO)13. However, the infrared and low-temperature proton NMR spectra of both compounds indicate that they exist as a mixture of isomers the two projected isomers for H2FeRu2Os(CO)13 are shown in Fig. 58 (247). The mixed manganese and rhenium-osmium complexes, H3MOs3(CO)13, have been prepared by acidification of the reaction mix-... [Pg.350]

Fischer-Tropsch catalysis, 34 71, 38 331-335 C2 oxygenate formation, 38 338 oxide-supported osmium clusters, 38 335 product selectivites, 38 333-334 proton-induced reduction of CO, 38 332-333... [Pg.105]

Figure 2.5 Schematic representation of the Au/MPS/PAH-Os/solution interface modeled in Refs. [118-120] using the molecular theory for modified polyelectrolyte electrodes described in Section 2.5. The red arrows indicate the chemical equilibria considered by the theory. The redox polymer, PAH-Os (see Figure 2.4), is divided into the poly(allyl-amine) backbone (depicted as blue and light blue solid lines) and the pyridine-bipyridine osmium complexes. Each osmium complex is in redox equilibrium with the gold substrate and, dependingon its potential, can be in an oxidized Os(lll) (red spheres) or in a reduced Os(ll) (blue sphere) state. The allyl-amine units can be in a positively charged protonated state (plus signs on the polymer... Figure 2.5 Schematic representation of the Au/MPS/PAH-Os/solution interface modeled in Refs. [118-120] using the molecular theory for modified polyelectrolyte electrodes described in Section 2.5. The red arrows indicate the chemical equilibria considered by the theory. The redox polymer, PAH-Os (see Figure 2.4), is divided into the poly(allyl-amine) backbone (depicted as blue and light blue solid lines) and the pyridine-bipyridine osmium complexes. Each osmium complex is in redox equilibrium with the gold substrate and, dependingon its potential, can be in an oxidized Os(lll) (red spheres) or in a reduced Os(ll) (blue sphere) state. The allyl-amine units can be in a positively charged protonated state (plus signs on the polymer...
Allyl bromide, irradiation of, 5 156 Allyl complexes, osmium, 37 244 ligand-centered reactions, 37 343 7t-Allyl derivatives, proton chemical shifts of, 4 182... [Pg.7]

Osmium (continued) carbide, 24 233 dianion, lA. Xil, 317-319 with phosphines and diphosphines, 30 191 protonation/deprotonation, 30 169 raft hexaosmium clusters, 30 180-182 reactions of condensation, 30 145 with hexafluoroacetone, 30 288 redox, 30 184-185 structural transformations, 30 203 sulfur-containing, synthesis of, 30 147 sulfur derivatives, 24 269, 300-310 synthesis... [Pg.218]


See other pages where Protonation, osmium is mentioned: [Pg.178]    [Pg.25]    [Pg.89]    [Pg.273]    [Pg.276]    [Pg.278]    [Pg.278]    [Pg.219]    [Pg.12]    [Pg.55]    [Pg.67]    [Pg.107]    [Pg.219]    [Pg.281]    [Pg.346]    [Pg.400]    [Pg.401]    [Pg.92]    [Pg.293]    [Pg.175]    [Pg.698]    [Pg.700]    [Pg.735]    [Pg.791]    [Pg.817]    [Pg.825]    [Pg.31]    [Pg.9]    [Pg.71]    [Pg.629]    [Pg.141]    [Pg.171]   
See also in sourсe #XX -- [ Pg.347 ]




SEARCH



Osmium carbonyl clusters protonation

Osmium complexes protonation

Osmium compounds protonation

Osmium protonation/deprotonation

Protonation, osmium 2], structure

© 2024 chempedia.info