Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Osmium compounds protonation

Protonation of 12 yields a compound best described as a face-protonated methylidyne complex, the tungsten-carbon bond length lying in the range observed for a triple bond (28). Protonation of the osmium compound 13 yields a true carbene complex, which for R = Ph has been characterized by X-ray crystallography (see Sections IV and VI). [Pg.133]

The formation of these compounds has been rationalized according to Scheme 6. The reaction of Os (E )-CH=C 11 Ph C1 (C())( P Pr3)2 with n-BuLi involves replacement of the chloride anion by a butyl group to afford the intermediate Os (/i> CH=CHPh ( -Bu)(CO)(P Pr3)2, which by subsequent hydrogen (3 elimination gives OsH ( >CI I=CHPh (CO)( P Pr3)2. The intramolecular reductive elimination of styrene from this compound followed by the C—H activation of the o-aryl proton leads to the hydride-aryl species via the styrene-osmium(O) intermediate Os r 2-CH2=CHPh (CO)(P Pr3)2. In spite of the fact that the hydride-aryl complex is the only species detected in solution, the formation of OsH ( )-CH=CHPh L(CO)(P Pr3)2 and 0s ( )-CH=CHPh (K2-02CH)(C0)(P,Pr3)2 suggests that in solution the hydride-aryl complex is in equilibrium with undetectable concentrations of OsH ( )-CH=CHPh (CO)(P,Pr3)2. This implies that the olehn-osmium(O) intermediate is easily accessible and can give rise to activation reactions at both the olefinic and the ortho phenyl C—H bonds of the... [Pg.9]

The infrared, NMR, and electronic absorption spectra of the two complexes H2FeRu2Os(CO)i3 and H2FeRuOs2(CO)13 have been taken to indicate a structure for these compounds similar to H2FeRu3(CO)13. However, the infrared and low-temperature proton NMR spectra of both compounds indicate that they exist as a mixture of isomers the two projected isomers for H2FeRu2Os(CO)13 are shown in Fig. 58 (247). The mixed manganese and rhenium-osmium complexes, H3MOs3(CO)13, have been prepared by acidification of the reaction mix-... [Pg.350]

Protonation of 322 with tetrafluoroboric acid in diethyl ether gives the cyclohexadienyl derivative 325 in 70% yield. Treatment of 325 with lithium aluminum hydride yields the biscyclohexadienyl osmium(II) complex 326. Treatment of 322 with PMe3 at 60°C gives the hydridophenyl osmium-(II) complex 181, rather than the expected arene bistrimethylphosphine osmium(O) compound, via intramolecular C—H bond activation of the benzene ligand (192,193) (Scheme 38). Compound 181 as well as the analogous ruthenium complex (92) have also been obtained directly by cocondensation of osmium or ruthenium atoms with benzene and tri-methylphosphine (62) [Eq. (44)]. [Pg.236]

The terminal acetylene derivatives Osg(CO)i6(RCCH) (R = Me, Et, Ph) have been shown to react with CO to give Osg(CO)i7(RCCH), (89), in which the acetylene ligand is still intact and sits on the base of the capped pyramidal osmium polyhedron. This compound was found to convert by the action of heat to an isomer in which the proton from the acetylene has been transferred to the metal array. The process is accompanied by an opening up of the metal cluster (Scheme 34). [Pg.200]

The pattern of chemical reactions observed for these compounds clearly sets them apart from "Fischer-type" carbyne complexes of GroupVI e.g., W(hCR)X(CO)4. Whereas the "Fischer-type" complexes typically react with nucleophiles at the carbyne carbon all of the reactions observed for the five coordinate mthenium and osmium complexes, including the cationic examples, are electrophilic additions to the MsC bond. The following sections deal individually with, protonation, addition of halides of the coinage metals, addition of chlorine and chalcogens, and finally an attempted nucleophilic addition where the nucleophile is directed to a remote site on the aryl ring of the carbyne substituent. [Pg.158]

Retaining the theme of metal carbonyl clusters, capping considerations in transition-metal clusters have been discussed with reference to [Sb2Co4(CX))] g( A-CX))], and [Bi2Co4(CO)jQ( i-CO)]" 28. An infrared spectroscopic study of the formation of carbonyl rhodium clusters on a rhodium electrode produced by oxidation reduction cycles in acidic solution 2 has also been published. Electrochemistry with ruthenium carbonyls >21 osmium carbonyls 2 jg also reported. Muon spin rotation in a metal-cluster carbonyl compound has been communicated and, lastly, a proton spin-lattice NMR relaxation study of hydride carbonyl clusters has been reported. This provides a method for determining distances involving hydrido ligands... [Pg.136]


See other pages where Osmium compounds protonation is mentioned: [Pg.55]    [Pg.171]    [Pg.178]    [Pg.12]    [Pg.67]    [Pg.281]    [Pg.293]    [Pg.698]    [Pg.30]    [Pg.178]    [Pg.198]    [Pg.283]    [Pg.182]    [Pg.91]    [Pg.13]    [Pg.295]    [Pg.123]    [Pg.12]    [Pg.283]    [Pg.293]    [Pg.1039]    [Pg.508]    [Pg.1571]    [Pg.259]    [Pg.376]    [Pg.4120]    [Pg.452]    [Pg.16]    [Pg.30]    [Pg.438]    [Pg.1068]    [Pg.272]    [Pg.64]    [Pg.494]    [Pg.138]    [Pg.409]    [Pg.166]    [Pg.360]    [Pg.356]    [Pg.103]    [Pg.336]   
See also in sourсe #XX -- [ Pg.336 ]




SEARCH



Compounds protons

Osmium compounds

Osmium protonation

Protonation compounds

© 2024 chempedia.info