Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Orthogonality calculations

It is important to note that the two surface calculations will be carried out in the diabatic representation. One can get the initial diabatic wave function matrix for the two surface calculations using the above adiabatic initial wave function by the following orthogonal transformation,... [Pg.47]

In modem quantum chemistry packages, one can obtain moleculai basis set at the optimized geometry, in which the wave functions of the molecular basis are expanded in terms of a set of orthogonal Gaussian basis set. Therefore, we need to derive efficient fomiulas for calculating the above-mentioned matrix elements, between Gaussian functions of the first and second derivatives of the Coulomb potential ternis, especially the second derivative term that is not available in quantum chemistry packages. Section TV is devoted to the evaluation of these matrix elements. [Pg.409]

The standard analytic procedure involves calculating the orthogonal transformation matrix T that diagonalizes the mass weighted Hessian approximation H = M 2HM 2, namely... [Pg.247]

Besides the aforementioned descriptors, grid-based methods are frequently used in the field of QSAR quantitative structure-activity relationships) [50]. A molecule is placed in a box and for an orthogonal grid of points the interaction energy values between this molecule and another small molecule, such as water, are calculated. The grid map thus obtained characterizes the molecular shape, charge distribution, and hydrophobicity. [Pg.428]

Tie first consideration is that the total wavefunction and the molecular properties calculated rom it should be the same when a transformed basis set is used. We have already encoun-ered this requirement in our discussion of the transformation of the Roothaan-Hall quations to an orthogonal set. To reiterate suppose a molecular orbital is written as a inear combination of atomic orbitals ... [Pg.108]

The surface that actually separates the classes is orthogonal to this discriminant function, as shown in Figure 12.37, and is chosen to maximise the number of compounds correctly classified. To use the results of a discriminant analysis, one simply calculates the appropriate value of the discriminant function, from which the class can be determined. [Pg.719]

SEMIEMPIRICAL CALCULATIONS ON LARGER MOLECULES The spin eigenfunctions are orthogonal... [Pg.271]

There are several variations of this method. The PRDDO/M method is parameterized to reproduce electrostatic potentials. The PRDDO/M/FCP method uses frozen core potentials. PRDDO/M/NQ uses an approximation called not quite orthogonal orbitals in order to give efficient calculations on very large molecules. The results of these methods are fairly good overall, although bond lengths involving alkali metals tend to be somewhat in error. [Pg.36]

Traditionally, excited states have not been one of the strong points of DFT. This is due to the difficulty of ensuring orthogonality in the ground-state wave function when no wave functions are being used in the calculation. [Pg.218]

OPW (orthogonalized plane wave) a band-structure computation method P89 (Perdew 1986) a gradient corrected DFT method parallel computer a computer with more than one CPU Pariser-Parr-Pople (PPP) a simple semiempirical method PCM (polarized continuum method) method for including solvation effects in ah initio calculations... [Pg.366]

The situation simplifies when V Q) is a parabola, since the mean position of the particle now behaves as a classical coordinate. For the parabolic barrier (1.5) the total system consisting of particle and bath is represented by a multidimensional harmonic potential, and all one should do is diagonalize it. On doing so, one finds a single unstable mode with imaginary frequency iA and a spectrum of normal modes orthogonal to this coordinate. The quantity A is the renormalized parabolic barrier frequency which replaces in a. multidimensional theory. In order to calculate... [Pg.79]

Katsanis, T., Use of Arbitrary Quasi-Orthogonals for Calculations Flow Distribution in the Meridional Plane of a Turbomachine, NASA TND-2546, 1964. [Pg.273]

While HiickeTs 4n + 2 rule applies only to monocyclic systems, HMO flieory is applicable to many other systems. HMO calculations of fused-ring systems are carried out in much the same way as for monocyclic species and provide energy levels and atomic coefficients for the systems. The incorporation of heteroatoms is also possible. Because of the underlying assumption of orthogonality of the a and n systems of electrons, HMO dieory is restricted to planar molecules. [Pg.36]

Alkyl derivatives of 1,3-butadiene usually undergo photosensitized Z-E isomerism when photosensitizers that can supply at least 60 kcal/mol are used. Two conformers of the diene, the s-Z and s-E, exist in equilibrium, so there are two nonidentical ground states from which excitation can occur. Two triplet excited states that do not readily interconvert are derived from the s-E and s-Z conformers. Theoretical calculations suggest that at their energy minimum the excited states of conjugated dienes can be described as an alkyl radical and an orthogonal allyl system called an allylmethylene diradical ... [Pg.772]

Obviously, the theory outhned above can be applied to two- and three-dimensional systems. In the case of a two-dimensional system the Fourier transforms of the two-particle function coefficients are carried out by using an algorithm, developed by Lado [85], that preserves orthogonality. A monolayer of adsorbed colloidal particles, having a continuous distribution of diameters, has been investigated by Lado. Specific calculations have been carried out for the system with the Schulz distribution [86]... [Pg.156]

Another use of frequency calculations is to determine the nature of a stationary point found by a geometry optimization. As we ve noted, geometry optimizations converge to a structure on the potential energy surface where the forces on the system are essentially zero. The final structure may correspond to a minimum on the potential energy surface, or it may represent a saddle point, which is a minimum with respect to some directions on the surface and a maximum in one or more others. First order saddle points—which are a maximum in exactly one direction and a minimum in all other orthogonal directions—correspond to transition state structures linking two minima. [Pg.70]

These new basis functions can easily be shown to be orthonormal. It also turns out that two-electron integrals calculated using these orthogonalized basis functions do indeed satisfy the ZDO approximation much more closely than the ordinart basis functions. [Pg.144]

While the modified energy equation provides for calculation of the flowrates and pressure drops in piping systems, the impulse-momenlum equation is required in order to calculate the reaction forces on curved pipe sections. I he impulse-momentum equation relates the force acting on the solid boundary to the change in fluid momentum. Because force and momentum are both vector quantities, it is most convenient to write the equations in terms of the scalar components in the three orthogonal directions. [Pg.179]


See other pages where Orthogonality calculations is mentioned: [Pg.115]    [Pg.297]    [Pg.157]    [Pg.115]    [Pg.297]    [Pg.157]    [Pg.33]    [Pg.45]    [Pg.2203]    [Pg.150]    [Pg.239]    [Pg.302]    [Pg.608]    [Pg.677]    [Pg.490]    [Pg.80]    [Pg.107]    [Pg.107]    [Pg.174]    [Pg.248]    [Pg.463]    [Pg.217]    [Pg.138]    [Pg.149]    [Pg.31]    [Pg.80]    [Pg.147]    [Pg.67]    [Pg.84]    [Pg.171]    [Pg.202]    [Pg.147]    [Pg.80]    [Pg.91]    [Pg.255]    [Pg.696]   
See also in sourсe #XX -- [ Pg.421 ]




SEARCH



Calculating the orthogonalizing matrix

© 2024 chempedia.info