Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Origination chondrites

Water and carbon play critical roles in many of the Earth s chemical and physical cycles and yet their origin on the Earth is somewhat mysterious. Carbon and water could easily form solid compounds in the outer regions of the solar nebula, and accordingly the outer planets and many of their satellites contain abundant water and carbon. The type I carbonaceous chondrites, meteorites that presumably formed in the asteroid belt between the terrestrial and outer planets, contain up to 5% (m/m) carbon and up to 20% (m/m) water of hydration. Comets may contain up to 50% water ice and 25% carbon. The terrestrial planets are comparatively depleted in carbon and water by orders of magnitude. The concentration of water for the whole Earth is less that 0.1 wt% and carbon is less than 500 ppm. Actually, it is remarkable that the Earth contains any of these compounds at all. As an example of how depleted in carbon and water the Earth could have been, consider the moon, where indigenous carbon and water are undetectable. Looking at Fig. 2-4 it can be seen that no water- or carbon-bearing solids should have condensed by equilibrium processes at the temperatures and pressures that probably were typical in the zone of fhe solar... [Pg.22]

The chondrules contained in the chondrites contain olivine, pyroxene, plagiok-lase, troilite and nickel-iron they can make up 40-90% of the chondrites. Chondrules are silicate spheroids, fused drops from the primeval solar nebula. Because of their differing constitution, chondrites are further subdivided one group in particular is important for the question of the origin of life, and has thus been intensively studied—that of the carbonaceous chondrites. [Pg.67]

The largest class of meteorite finds is stony meteorites, made principally of stone. The general stony classification is divided into three subclasses called chondrites, carbonaceous chondrites and achondrites, and it is at this level of distinction at which we will stop. Before looking at their mineral and isotopic structure in more detail, it is useful to hold the composition of the Earth s crust in mind here for comparison. The Earth s crust is 49 per cent oxygen, 26 per cent silicon, 7.5 per cent aluminium, 4.7 per cent iron, 3.4 per cent calcium, 2.6 per cent sodium, 2.4 per cent potassium and 1.9 per cent magnesium, which must have formed from the common origin of the solar system. [Pg.162]

Several factors indicate that the amino acids detected in all of these carbonaceous chondrites are indigenous and that they must have originated abiotically. First, the presence of protein and non-protein amino acids, with approximately equal quantities of D and L enantiomers points to a nonbiological origin and precludes terrestrial contamination. In addition, the non-extractable fraction of the Murchison is significantly heavier in 13C than terrestrial samples. Finally, the relative abundances of some compounds detected resemble those of products formed in prebiotic synthesis experiments. The aliphatic hydrocarbons are randomly distributed in chain length, and the C2, C3, and C4 amino acids have the highest concentrations (i.e., the most easily synthesized amino acids with the least number of possible structures are most abundant) [4]. [Pg.391]

The careful study of at least five different carbonaceous chondrites establishes the fact that these meteorites contain carbon compounds of extraterrestrial origin and of great significance in chemical evolution. Their presence confirms that the chemical reaction paths producing biologically important monomer molecules occur in the far reaches of our solar system. [Pg.392]

Figure 9.9 REE abundances from archaeological glass, showing the effect of chondrite normalization, (a) shows the raw abundances of the REE measured on a set of English medieval window glasses, with the saw-tooth pattern evident, and little indication of differences between any of the samples (apart from perhaps one which has lower overall REE concentrations), (b) shows the same data normalized to the chondrite data (Table 9.1). The saw-tooth has largely disappeared, and close inspection suggests that two samples have a positive europium anomaly, possibly indicating a different geographical origin. Figure 9.9 REE abundances from archaeological glass, showing the effect of chondrite normalization, (a) shows the raw abundances of the REE measured on a set of English medieval window glasses, with the saw-tooth pattern evident, and little indication of differences between any of the samples (apart from perhaps one which has lower overall REE concentrations), (b) shows the same data normalized to the chondrite data (Table 9.1). The saw-tooth has largely disappeared, and close inspection suggests that two samples have a positive europium anomaly, possibly indicating a different geographical origin.
Choi BG, Huss GR, Wasserburg GJ, Gallino R (1998) Presolar corundum and spinel in ordinary chondrites origins from AGB stars and a supernova. Science 282 1284-1289 Christophe M (1968) Un chondre exceptionnel dans la meteorite de Vigarano. Bui Soc Er Mineral Cristallogr 91 212-214... [Pg.57]

Gooding JL, Mayeda TK, Clayton RN, Fukuoka T (1983) Oxygen isotopic heterogeneities, their petrological correlations, and implications for melt origins of chondrules in unequilibrated ordinary chondrites. Earth Planet Sci Lett 65 209-224... [Pg.58]

Turner G. (1968). The distribution of potassium and argon in chondrites. In Origin and Distribution of the Elements, L. H. Ahrens, ed. Pergamon Press, London. [Pg.858]

D/H ratios in carbonaceons chondrites may hint on the origin of water on Earth. Robert (2001) suggested that since the contribntion of cometary water to terrestrial water should be less than 10%, most of the water on Earth should derive from a meteoritic source. [Pg.96]

EUer and Kitchen (2004) have re-evaluated the hydrogen isotope composition of water-rich carbonaceous chondrites by stepped-heating analysis of very small amounts of separated water-rich materials. Their special aim has been to deduce the origin of the water with which the meteorites have reacted. They observed a decrease in 5D with increasing extent of aqueous alteration from 0%c (least altered, most volatile rich) to —200%c (most altered, least volatile rich). [Pg.97]

EUer JM, Kitchen N (2004) Hydrogen isotope evidence for the origin and evolution of the carbonaceous chondrites. Geochim Cosmochim Acta 68 1395—1411 EUer JM, Schauble E (2004) in earth s atmosphere. Geochim Cosmochim Acta 68 ... [Pg.241]

Kerridge JF (1983) Isotopic composition of carbonaceous-chondrite kerogen evidence for an interstellar origin of organic matter in meteorites. Earth Planet Sci Lett 64 186-200 Kerridge JF, Haymon RM, Kastner M (1983) Sulfur isotope systematics at the 21°N site. East Pacific Rise. Earth Planet Sci Lett 66 91-100... [Pg.253]

The carbonaceous chondrites, which constitute a tiny proportion of the matter within the Solar System, do conserve within them the original composition of the Solar System. If we exclude the volatile elements mentioned above, these rare meteorites have hardly been affected by the subsequent metamorphism of our planetary system. [Pg.55]

In recent years, a new source of information about stellar nucleosynthesis and the history of the elements between their ejection from stars and their incorporation into the solar system has become available. This source is the tiny dust grains that condensed from gas ejected from stars at the end of their lives and that survived unaltered to be incorporated into solar system materials. These presolar grains (Fig. 5.1) originated before the solar system formed and were part of the raw materials for the Sun, the planets, and other solar-system objects. They survived the collapse of the Sun s parent molecular cloud and the formation of the accretion disk and were incorporated essentially unchanged into the parent bodies of the chondritic meteorites. They are found in the fine-grained matrix of the least metamorphosed chondrites and in interplanetary dust particles (IDPs), materials that were not processed by high-temperature events in the solar system. [Pg.120]

Cosmochemistry is the study of the chemical compositions of various solar system materials. Chondrites are the most abundant primitive samples. They are essentially sedimentary rocks composed of mechanical mixtures of materials with different origins (chondrules, refractory inclusions, metal, sulfide, matrix), which we will call components. Chondrites formed by the accretion of solid particles within the solar nebula or onto the surfaces of growing planetesimals. They are very old (>4.5 billion years, as measured by radioactive chronometers) and contain some of the earliest formed objects in the solar system. Chondrites have bulk chemical compositions very similar to the solar photosphere, except... [Pg.157]


See other pages where Origination chondrites is mentioned: [Pg.166]    [Pg.174]    [Pg.1201]    [Pg.503]    [Pg.64]    [Pg.287]    [Pg.309]    [Pg.166]    [Pg.174]    [Pg.1201]    [Pg.503]    [Pg.64]    [Pg.287]    [Pg.309]    [Pg.96]    [Pg.99]    [Pg.539]    [Pg.30]    [Pg.38]    [Pg.69]    [Pg.162]    [Pg.177]    [Pg.198]    [Pg.210]    [Pg.387]    [Pg.390]    [Pg.392]    [Pg.400]    [Pg.340]    [Pg.537]    [Pg.181]    [Pg.59]    [Pg.213]    [Pg.217]    [Pg.220]    [Pg.96]    [Pg.98]    [Pg.20]    [Pg.88]    [Pg.98]    [Pg.128]   
See also in sourсe #XX -- [ Pg.184 ]




SEARCH



Chondrites

© 2024 chempedia.info