Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Orientational discotics

It was a very simple and straightforward model. As an optical amateur, 1 could easily imagine what to do to realize this concept. My research group members devoted themselves to find a method to orient discotic liquid crystals (DLCs) and challenged various alignment methods such as the differential roller speed rubbing method [22] and the photoisomerization of azo compounds [23]. [Pg.97]

Thennotropic liquid crystal phases are fonned by anisotropic molecules witli long-range orientational order and in many types of stmcture witli some degree of translational order. The main types of mesogen are Arose tlrat are rodlike or calamitic and Arose Arat are disclike or discotic. [Pg.2543]

Thennotropic liquid crystal phases are fonned by rodlike or disclike molecules. However, in the following we consider orientational ordering of rodlike molecules for definiteness, although the same parameters can be used for discotics. In a liquid crystal phase, the anisotropic molecules tend to point along the same direction. This is known as the director, which is a unit vector denoted n. [Pg.2554]

McMillan s model [71] for transitions to and from tlie SmA phase (section C2.2.3.2) has been extended to columnar liquid crystal phases fonned by discotic molecules [36, 103]. An order parameter tliat couples translational order to orientational order is again added into a modified Maier-Saupe tlieory, tliat provides tlie orientational order parameter. The coupling order parameter allows for tlie two-dimensional symmetry of tlie columnar phase. This tlieory is able to account for stable isotropic, discotic nematic and hexagonal columnar phases. [Pg.2560]

Disc-like particles can also undergo an Onsager transition—here tire particles fonn a discotic nematic, where tire short particle axes tend to be oriented parallel to each other. In practice, clay suspensions tend to display sol-gel transitions, witliout a clear tendency towards nematic ordering (for instance, [22]). Using sterically stabilized platelets, an isotropic-nematic transition could be observed [119]. [Pg.2689]

Fig. 11. Orientational order in discotic Hquid crystal phases (a) nematic phase (b) columnar phase. Fig. 11. Orientational order in discotic Hquid crystal phases (a) nematic phase (b) columnar phase.
Disk-shaped molecules based on a metal atom possess discotic Hquid crystal phases. An example is octasubstituted metaHophthalocyanine. FiaaHy, metallomesogens which combine both rod-like and disk-like features iato a single molecule adopt the biaxial nematic phase. In addition to there being a preferred direction for orientation of the longest molecular axis as is tme for the nematic phase, perpendicular to this direction is another preferred direction for orientation of the shortest molecular axis (12). NonmetaHomesogens which combine both rod- and disk-like features iato a single molecule also adopt a biaxial nematic phase, but at least ia one case the amount of biaxiaHty is very small (15). [Pg.196]

The rigid nature of the mesophase pitch molecules creates a strong relationship between flow and orientation. In this regard, mesophase pitch may be considered to be a discotic nematic liquid crystal. The flow behavior of liquid crystals of the nematic type has been described by a continuum theory proposed by Leslie [36] and Ericksen [37]. [Pg.129]

Liquid crystals (LCs) are organic liquids with long-range ordered structures. They have anisotropic optical and physical behaviors and are similar to crystal in electric field. They can be characterized by the long-range order of their molecular orientation. According to the shape and molecular direction, LCs can be sorted as four types nematic LC, smectic LC, cholesteric LC, and discotic LC, and their ideal models are shown in Fig. 23 [52,55]. [Pg.45]

Discotic LC are formed by disk-like molecules with aromatic cores and side chains that are either hydrophobic (i.e., thermotropic) or hydrophilic (i.e., lyotropic). The discotic nematic (No) phase behaves like a normal nematic phase formed by rod-like molecules, and the disk-like molecules are oriented with their short molecular axes parallel to the director but show no positional order. More ordered columnar phases are commonly formed by thermotropic discotics. The two-dimensional structure can pack the columns into a hexagonal or rectangular columnar phase, while within the columns, disks can be... [Pg.131]

Thermotropic liquid crystalline (LC) phases or mesophases are usually formed by rod-like (calamitic) or disk-like (discotic) molecules. Spheroidal dendrimers are therefore incapable of forming mesophases unless they are flexible, because this would allow them to deform and subsequently line up in a common orientation. However, poly(ethyleneimine) dendrimers were reported to exhibit lyotropic liquid crystalline properties as early as 1988 [123],... [Pg.401]

Discotic liquid crystals arise from disk-shaped molecules as nematic or cholesteric mesophases. Their structural characteristics are similar to the respective ealamitie mesophases, that is, the normals of the disks are oriented parallel. Instead of the smectic mesophases, diseotie columnar liquid crystals arise from eonnecting the disks to each other. The columns of the discotic columnar mesophase form a two-dimensional lattice whieh is in a hexagonal or rectangular modification. In addition, the columns may be tilted (Fig. 2f,g). [Pg.119]

In discotic phases the orientation of the molecules is perpendicular to the molecular plane. Here, the columns can be arranged in a nematic or columnar manner. In the nematic phase the molecules possess a centre of gravity randomly ordered, but with the short molecular axis of each molecule more or less parallel. In the columnar phase, beside the preferable orientation of the short molecular axes, the disc-like molecules are ordered forming columns. Depending on the correlation strength between he columns these phases can be subdivided into ordered or disordered. A third possibility is to have a thermodynamically preferable position of the columns in the mesophase, like in a hexagonal cell. Additionally, a tilt of the columns is also possible. [Pg.430]

In calamitic systems it is the long axis of the molecules that is correlated in the mesophases but in discotic systems it is the short axis and different types of organization are seen, although disk-like molecules also form a nematic phase in which a unique axis is orientationally correlated (Fig. 25). However, below the nematic phase is a series of columnar phases (Col) in which the disks are stacked up into columns, which are themselves arranged according to some symmetric pattern. Typical... [Pg.172]

In the simplest liquid-crystalline phase, namely the uniaxial nematic, there is at rest a special direction designated by a unit vector n called the director (see Fig. 10-2). In the plane transverse to the director, the fluid is isotropic. The most common nematics are composed of oblong molecules that tend to point in a common direction, which defines the director orientation. Oblate, or disc-like, molecules can also form uniaxial nematics for these discotic nematics, the director is defined by the average orientation of the short axis of the molecule. Lath-like molecules or micelles (shaped like rectangular slabs), in which all three dimensions of the molecule are significantly different from each other, can form biaxial nematics (Praefcke et al. 1991 Chandrasekhar 1992 Fialtkowski 1997). A biaxial... [Pg.446]

D. Baalss and S. Hess, The Viscosity Coefficients of Oriented Nematic and Nematic Discotic Liquid Crystals Affine Transformation Model, Z. Naturforsch. 43a (1988) 662. [Pg.357]


See other pages where Orientational discotics is mentioned: [Pg.283]    [Pg.523]    [Pg.524]    [Pg.146]    [Pg.701]    [Pg.283]    [Pg.523]    [Pg.524]    [Pg.146]    [Pg.701]    [Pg.2543]    [Pg.197]    [Pg.67]    [Pg.93]    [Pg.96]    [Pg.97]    [Pg.231]    [Pg.366]    [Pg.375]    [Pg.375]    [Pg.376]    [Pg.379]    [Pg.407]    [Pg.97]    [Pg.406]    [Pg.426]    [Pg.424]    [Pg.249]    [Pg.377]    [Pg.876]    [Pg.877]    [Pg.923]    [Pg.269]    [Pg.256]    [Pg.108]    [Pg.461]    [Pg.54]   
See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.2 , Pg.693 ]




SEARCH



Discotics

NMR studies of orientational and conformational order in discotic thermotropic polymers

© 2024 chempedia.info