Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic reactions covalent bonds

Properties of zinc salts of inorganic and organic salts are Hsted in Table 1 with other commercially important zinc chemicals. In the dithiocarbamates, 2-mercaptobenzothiazole, and formaldehyde sulfoxylate, zinc is covalendy bound to sulfur. In compounds such as the oxide, borate, and sihcate, the covalent bonds with oxygen are very stable. Zinc—carbon bonds occur in diorganozinc compounds, eg, diethjizinc [557-20-0]. Such compounds were much used in organic synthesis prior to the development of the more convenient Grignard route (see Grignard reactions). [Pg.419]

Many enzymes carry out their catalytic function relying solely on their protein structure. Many others require nonprotein components, called cofactors (Table 14.2). Cofactors may be metal ions or organic molecules referred to as coenzymes. Cofactors, because they are structurally less complex than proteins, tend to be stable to heat (incubation in a boiling water bath). Typically, proteins are denatured under such conditions. Many coenzymes are vitamins or contain vitamins as part of their structure. Usually coenzymes are actively involved in the catalytic reaction of the enzyme, often serving as intermediate carriers of functional groups in the conversion of substrates to products. In most cases, a coenzyme is firmly associated with its enzyme, perhaps even by covalent bonds, and it is difficult to... [Pg.430]

Polar reactions occur because of the electrical attraction between positive and negative centers on functional groups in molecules. To see how these reactions take place, let s first recall the discussion of polar covalent bonds in Section 2.1 and then look more deeply into the effects of bond polarity on organic molecules. [Pg.142]

A number of studies have focused on D-A systems in which D and A are either embedded in a rigid matrix [103-110] or separated by a rigid spacer with covalent bonds [111-118], Miller etal. [114, 115] gave the first experimental evidence for the bell-shape energy gap dependence in charge shift type ET reactions [114,115], Many studies have been reported on the photoinduced ET across the interfaces of some organized assemblies such as surfactant micelles [4] and vesicles [5], wherein some particular D and A species are expected to be separated by a phase boundary. However, owing to the dynamic nature of such interfacial systems, D and A are not always statically fixed at specific locations. [Pg.84]

In most reactions of organic compounds one or more covalent bonds are broken. We can divide organic mechanisms into three basic types, depending on how the bonds break. [Pg.274]

The energy for the fission of the covalent bond in organic contaminants is normally supplied thermally using thermodynamically accessible chemical or biochemical reactions, or by the introduction of catalysts to lower the activation energy of the reactions. There has been interest, however, in using electrical energy in a number of forms to carry out these reactions. A selection of processes for the destruction of contaminant is noted with some illustrative examples. [Pg.37]

The reactions of halogens and hydrogen halides with alkenes are electrophilic addition reactions. This means that the initial attack on the organic molecule is by an electron-deficient species that accepts a lone pair of electrons to form a covalent bond. This species is called an electrophile. In the case of the reaction with hydrogen bromide, the mechanism for the reaction is as shown. [Pg.91]

Herrmann WA, Brossmer C, Reisinger CP, Riermaier T, Ofele K, Beller M (1997) Coordination chemistry and mechanisms of metal-catalyzed C-C coupling reactions. Part 10. Palladacycles efficient new catalysts for the Heck vinylation of aryl halides. Chem Eur J 3 1357-1364 Iyer S, Jayanthi A (2001) Acetylferrocenyloxime palladacycle-catalyzed Heck reactions. Tetrahedron Lett 42 7877-7878 Iyer S, Ramesh C (2000) Aryl-Pd covalently bonded palladacycles, novel amino and oxime catalysts di- x-chlorobis(benzaldehydeoxime-6-C,AT)dipalla-dium(II), di- x-chlorobis(dimethylbenzylamine-6-C,A)dipalladium(II) for the Heck reaction. Tetrahedron Lett 41 8981-8984 Jeffery T (1984) Palladium-catalysed vinylation of organic halides under solid-liquid phase transfer conditions. J Chem Soc Chem Commun 1287-1289 (b) idem,... [Pg.97]

As indicated in Figure 3.4, the covalent bond, i.e., two common shared electrons, between two carbon atoms in the complex molecule is cleaved when initiated by the exoenzymes. The highly reactive intermediates that are formed react and produce new and stable bonds resulting in two new molecules that may undergo further hydrolysis. Hydrolysis is, thus, an important initial step in the transformation of complex organic matter present in a form that cannot directly be used at substrate. Hydrolysis is a process that—with different reaction rates — proceeds under aerobic, anoxic and anaerobic conditions. It is important to note that hydrolysis takes place without use of an electron acceptor. [Pg.44]

Zeolites are the main catalyst in the petrochemical industry. The importance of these aluminosilicates is due to their capacity to promote many important reactions. By analogy with superacid media (1), carbocations are believed to be key intermediates in these reactions. However, simple carbocationic species are seldom observed on the zeolite surface as persistent intermediates within the time-scale of spectroscopic techniques. Indeed, only some conjugated cyclic carbocations were observed as long living species, but covalent intermediates, namely alkyl-aluminumsilyl oxonium ions (2) (scheme 1), where the organic moiety is bonded to the zeolite structure, are usually thermodynamically more stable than the free carbocations (3,4). [Pg.268]


See other pages where Organic reactions covalent bonds is mentioned: [Pg.100]    [Pg.53]    [Pg.1449]    [Pg.4]    [Pg.191]    [Pg.1290]    [Pg.220]    [Pg.375]    [Pg.246]    [Pg.323]    [Pg.171]    [Pg.3]    [Pg.409]    [Pg.339]    [Pg.194]    [Pg.453]    [Pg.456]    [Pg.49]    [Pg.55]    [Pg.196]    [Pg.251]    [Pg.225]    [Pg.259]    [Pg.43]    [Pg.66]    [Pg.452]    [Pg.245]    [Pg.19]    [Pg.169]    [Pg.562]    [Pg.739]    [Pg.1037]    [Pg.15]    [Pg.107]    [Pg.102]    [Pg.1438]    [Pg.9]    [Pg.117]    [Pg.501]    [Pg.659]    [Pg.14]   


SEARCH



Covalent bonding reactions

© 2024 chempedia.info