Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic chemistry ketone

Hydrazine and its alkylated derivatives are used as rocket fuels in organic chemistry, substituted phenylhydrazines are important in the characterisation of sugars and other compounds, for example aldehydes and ketones containing the carbonyl group C=0. [Pg.224]

Phenylhydrazine on exposure to light slowly darkens and eventually becomes deep red in colour salts of the base share this property but to a lesser degree, the sulphate and acetate (of the common salts) being most stable to light. Phenylhydrazine is largely used in organic chemistry to characterise aldehydes and ketones as their phenyl-hydrazones (pp. 342, 345), and carbohydrates as their osazones (pp. 136-140). It is readily reduced thus in the process of osazone formation some of the phenylhydrazine is reduced to aniline and ammonia. On the... [Pg.199]

Strike sees a point to this in Vogel s text Practical Organic Chemistry (3 ed.)[37]. In it, Vogel crystallizes his ketones using a saturated sodium bisulfite solution that a/so contains a little solvent. This is in contrast to the straight up aqueous (only water) solution that Strike described above. Here is A/hat Vogel said on page 342 ... [Pg.59]

Anyway, there have been two very hot topics in chemistry lately clay microwaves. Both have been shown to do remarkable things in preparative organic chemistry. And this article Strike has [58], has combined both to produce some stunning reductive ami-nations of ketones to final amine products. The procedure involves mixing naked ketone, the amine, some clay and some NaBH4 in a beaker and zapping it in the microwave for only a couple of minutes. That s it. The general procedure is as follows ... [Pg.123]

Ozonolysis has both synthetic and analytical applications m organic chemistry In synthesis ozonolysis of alkenes provides a method for the preparation of aldehydes and ketones... [Pg.263]

An ability to form carbon-carbon bonds is fundamental to organic synthesis The addition of Grignard reagents to aldehydes and ketones is one of the most frequently used reactions m synthetic organic chemistry Not only does it permit the extension of carbon chains but because the product is an alcohol a wide variety of subsequent func tional group transformations is possible... [Pg.595]

The next several chapters deal with the chemistry of various oxygen containing func tional groups The interplay of these important classes of compounds—alcohols ethers aldehydes ketones carboxylic acids and derivatives of carboxylic acids— IS fundamental to organic chemistry and biochemistry... [Pg.623]

The mechanisms by which transition metal oxidizing agents convert alcohols to aldehydes and ketones are complicated with respect to their inorganic chemistry The organic chemistry is clearer and one possible mechanism is outlined m Figure 15 4 The... [Pg.643]

As we 11 see later in this chapter and the next aldehydes and ketones are involved in many of the most used reactions m synthetic organic chemistry Where do aldehydes and ketones come from ... [Pg.709]

Carey Organic Chemistry I 17 Aldehydes and Ketones I Text Fifth Edition Nucleophilic Addition to... [Pg.714]

In the preceding chapter you learned that nucleophilic addition to the carbonyl group IS one of the fundamental reaction types of organic chemistry In addition to its own reactivity a carbonyl group can affect the chemical properties of aldehydes and ketones m other ways Aldehydes and ketones having at least one hydrogen on a carbon next to the carbonyl are m equilibrium with their enol isomers... [Pg.755]

You have already had considerable experience with carbanionic compounds and their applications in synthetic organic chemistry The first was acetyhde ion m Chapter 9 followed m Chapter 14 by organometallic compounds—Grignard reagents for example—that act as sources of negatively polarized carbon In Chapter 18 you learned that enolate ions—reactive intermediates generated from aldehydes and ketones—are nucleophilic and that this property can be used to advantage as a method for carbon-carbon bond formation... [Pg.886]

Reduction (Section 2 19) Gam in the number of electrons as sociated with an atom In organic chemistry reduction of carbon occurs when a bond between carbon and an atom which IS more electronegative than carbon is replaced by a bond to an atom which is less electronegative than carbon Reductive ami nation (Section 22 10) Method for the prepara tion of amines in which an aldehyde or a ketone is treated with ammonia or an amine under conditions of catalytic hy drogenation... [Pg.1292]

In general, peroxomonosulfates have fewer uses in organic chemistry than peroxodisulfates. However, the triple salt is used for oxidizing ketones (qv) to dioxiranes (7) (71,72), which in turn are useful oxidants in organic chemistry. Acetone in water is oxidized by triple salt to dimethyldioxirane, which in turn oxidizes alkenes to epoxides, polycycHc aromatic hydrocarbons to oxides and diones, amines to nitro compounds, sulfides to sulfoxides, phosphines to phosphine oxides, and alkanes to alcohols or carbonyl compounds. [Pg.95]

Addition of sodium dithionite to formaldehyde yields the sodium salt of hydroxymethanesulfinic acid [79-25-4] H0CH2S02Na, which retains the useful reducing character of the sodium dithionite although somewhat attenuated in reactivity. The most important organic chemistry of sodium dithionite involves its use in reducing dyes, eg, anthraquinone vat dyes, sulfur dyes, and indigo, to their soluble leuco forms (see Dyes, anthraquinone). Dithionite can reduce various chromophores that are not reduced by sulfite. Dithionite can be used for the reduction of aldehydes and ketones to alcohols (348). Quantitative studies have been made of the reduction potential of dithionite as a function of pH and the concentration of other salts (349,350). [Pg.150]

The choice of which reactions to include is not an easy one. First there are the well known "Name Reactions", that have appeared in various monographs or in the old Merck index. Some of these are so obvious mechanistically to the modern organic chemistry practitioner that we have in fact omitted them for instance esterification of alcohols with acid chlorides - the Schotten-Baumann procedure. Others are so important and so well entrenched by name, like the Baeyer-Villiger ketone oxidation, that it is impossible to ignore them. In general we have kept older name reactions that are not obvious at first glance. [Pg.459]

Carey Organic Chemistry, I 17. Aldehydes and Ketones I Text... [Pg.751]

Anions of (3-keto esters are said to be synthetically equivalent to the enolates of ketones. The anion of ethyl acetoacetate is synthetically equivalent to the enolate of acetone, for example. The use of synthetically equivalent groups is a common tactic in synthetic organic chemistry. One of the skills that characterize the most creative practitioners of organic synthesis is an ability to recognize situations in which otherwise difficult transfonnations can be achieved through the use of synthetically equivalent reagents. [Pg.896]

The [ 2 + 4]-cycloaddition reaction of aldehydes and ketones with 1,3-dienes is a well-established synthetic procedure for the preparation of dihydropyrans which are attractive substrates for the synthesis of carbohydrates and other natural products [2]. Carbonyl compounds are usually of limited reactivity in cycloaddition reactions with dienes, because only electron-deficient carbonyl groups, as in glyoxy-lates, chloral, ketomalonate, 1,2,3-triketones, and related compounds, react with dienes which have electron-donating groups. The use of Lewis acids as catalysts for cycloaddition reactions of carbonyl compounds has, however, led to a new era for this class of reactions in synthetic organic chemistry. In particular, the application of chiral Lewis acid catalysts has provided new opportunities for enantioselec-tive cycloadditions of carbonyl compounds. [Pg.156]

The addition of the a-carbon of an enolizable aldehyde or ketone 1 to the carbonyl group of a second aldehyde or ketone 2 is called the aldol reaction It is a versatile method for the formation of carbon-carbon bonds, and is frequently used in organic chemistry. The initial reaction product is a /3-hydroxy aldehyde (aldol) or /3-hydroxy ketone (ketol) 3. A subsequent dehydration step can follow, to yield an o ,/3-unsaturated carbonyl compound 4. In that case the entire process is also called aldol condensation. [Pg.4]

In general however, ozonolysis is of limited synthetic importance. For quite some time ozonolysis has been an important tool for structure elucidation in organic chemistry, but has lost its importance when spectroscopic methods were fully developed for that purpose. The identification of the aldehydes and/or ketones obtained by ozonolysis of unsaturated compounds allowed for conclusions about the structure of the starting material, but has practically lost its importance since then. [Pg.219]

Alcohols occupy a central position in organic chemistry. They can be prepared from many other kinds of compounds (alkenes.. alkyl halides, ketones, esters, and aldehydes, among others), and they can be transformed into an equally wide assortment of compounds (Figure 17.3). [Pg.607]

Much of organic chemistry is simply the chemistry of carbonyl compounds. Aldehydes and ketones, in particular, are intermediates in the synthesis of many pharmaceutical agents, in almost all biological pathways, and in numerous industrial processes, so an understanding of their properties and reactions is essential. We ll look in this chapter at some of their most important reactions. [Pg.696]


See other pages where Organic chemistry ketone is mentioned: [Pg.5]    [Pg.896]    [Pg.1290]    [Pg.403]    [Pg.311]    [Pg.178]    [Pg.616]    [Pg.314]    [Pg.296]   
See also in sourсe #XX -- [ Pg.214 , Pg.215 ]

See also in sourсe #XX -- [ Pg.338 ]

See also in sourсe #XX -- [ Pg.691 , Pg.691 ]

See also in sourсe #XX -- [ Pg.366 ]

See also in sourсe #XX -- [ Pg.978 , Pg.979 , Pg.980 ]




SEARCH



Ketones chemistry

Organic chemistry aldehydes and ketones

© 2024 chempedia.info