Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Orbital chemisorption

We consider first some experimental observations. In general, the initial heats of adsorption on metals tend to follow a common pattern, similar for such common adsorbates as hydrogen, nitrogen, ammonia, carbon monoxide, and ethylene. The usual order of decreasing Q values is Ta > W > Cr > Fe > Ni > Rh > Cu > Au a traditional illustration may be found in Refs. 81, 84, and 165. It appears, first, that transition metals are the most active ones in chemisorption and, second, that the activity correlates with the percent of d character in the metallic bond. What appears to be involved is the ability of a metal to use d orbitals in forming an adsorption bond. An old but still illustrative example is shown in Fig. XVIII-17, for the case of ethylene hydrogenation. [Pg.715]

Sequences such as the above allow the formulation of rate laws but do not reveal molecular details such as the nature of the transition states involved. Molecular orbital analyses can help, as in Ref. 270 it is expected, for example, that increased strength of the metal—CO bond means decreased C=0 bond strength, which should facilitate process XVIII-55. The complexity of the situation is indicated in Fig. XVIII-24, however, which shows catalytic activity to go through a maximum with increasing heat of chemisorption of CO. Temperature-programmed reaction studies show the presence of more than one kind of site [99,1(K),283], and ESDIAD data show both the location and the orientation of adsorbed CO (on Pt) to vary with coverage [284]. [Pg.732]

Ultraviolet photoelectron spectroscopy (UPS) results have provided detailed infomiation about CO adsorption on many surfaces. Figure A3.10.24 shows UPS results for CO adsorption on Pd(l 10) [58] that are representative of molecular CO adsorption on platinum surfaces. The difference result in (c) between the clean surface and the CO-covered surface shows a strong negative feature just below the Femii level ( p), and two positive features at 8 and 11 eV below E. The negative feature is due to suppression of emission from the metal d states as a result of an anti-resonance phenomenon. The positive features can be attributed to the 4a molecular orbital of CO and the overlap of tire 5a and 1 k molecular orbitals. The observation of features due to CO molecular orbitals clearly indicates that CO molecularly adsorbs. The overlap of the 5a and 1 ti levels is caused by a stabilization of the 5 a molecular orbital as a consequence of fomiing the surface-CO chemisorption bond. [Pg.951]

Flead and Silva used occupation numbers obtained from a periodic FIF density matrix for the substrate to define localized orbitals in the chemisorption region, which then defines a cluster subspace on which to carry out FIF calculations [181]. Contributions from the surroundings also only come from the bare slab, as in the Green s matrix approach. Increases in computational power and improvements in minimization teclmiques have made it easier to obtain the electronic properties of adsorbates by supercell slab teclmiques, leading to the Green s fiinction methods becommg less popular [182]. [Pg.2226]

Pisani C 1978 Approach to the embedding problem in chemisorption in a self-consistent-field-molecular-orbital formalism Phys. Rev. B 17 3143... [Pg.2236]

Head J D and Silva S J 1996 A localized orbitals based embedded cluster procedure for modeling chemisorption on large finite clusters and infinitely extended surfaces J. Chem. Phys. 104 3244... [Pg.2237]

Figure 2. I. Spatial distribution of the main orbitals of N2 involved in molecular chemisorption on iron promoted by potassium (K or K20). Arrows indicate the direction of transfer of electron density.5... Figure 2. I. Spatial distribution of the main orbitals of N2 involved in molecular chemisorption on iron promoted by potassium (K or K20). Arrows indicate the direction of transfer of electron density.5...
Figure 2.14. The molecular orbitals of gas phase carbon monoxide, (a) Energy diagram indicating how the molecular orbitals arise from the combination of atomic orbitals of carbon (C) and oxygen (O). Conventional arrows are used to indicate the spin orientations of electrons in the occupied orbitals. Asterisks denote antibonding molecular orbitals, (b) Spatial distributions of key orbitals involved in the chemisorption of carbon monoxide. Barring indicates empty orbitals.5 (c) Electronic configurations of CO and NO in vacuum as compared to the density of states of a Pt(lll) cluster.11 Reprinted from ref. 11 with permission from Elsevier Science. Figure 2.14. The molecular orbitals of gas phase carbon monoxide, (a) Energy diagram indicating how the molecular orbitals arise from the combination of atomic orbitals of carbon (C) and oxygen (O). Conventional arrows are used to indicate the spin orientations of electrons in the occupied orbitals. Asterisks denote antibonding molecular orbitals, (b) Spatial distributions of key orbitals involved in the chemisorption of carbon monoxide. Barring indicates empty orbitals.5 (c) Electronic configurations of CO and NO in vacuum as compared to the density of states of a Pt(lll) cluster.11 Reprinted from ref. 11 with permission from Elsevier Science.
The chemisorptive bond is a chemical bond. The nature of this bond can be covalent or can have a strong ionic character. The formation of the chemisorptive bond in general involves either donation of electrons from the adsorbate to the metal (donation) or donation of electrons from the metal to the adsorbate (backdonation).2 In the former case the adsorbate is termed electron donor, in the latter case it is termed electron acceptor.3 In many cases both donation and backdonation of electrons is involved in chemisorptive bond formation and the adsorbate behaves both as an electron acceptor and as an electron donor. A typical example is the chemisorption of CO on transition metals where, according to the model first described by Blyholder,4 the chemisorptive bond formation involves both donation of electrons from the 7t orbitals of CO to the metal and backdonation of electrons from the metal to the antibonding n orbitals of CO. [Pg.279]

Figure 6.14. CO chemisorption on a transition metal. Molecular orbitals and density of states before (a,b) and after (c and d) adsorption. Effect of varying 0 and EF on electron backdonation (c) and donation (d). Based on Fig. 4 of ref. 98. See text for discussion. Reprinted with permission from Elsevier Science. Figure 6.14. CO chemisorption on a transition metal. Molecular orbitals and density of states before (a,b) and after (c and d) adsorption. Effect of varying 0 and EF on electron backdonation (c) and donation (d). Based on Fig. 4 of ref. 98. See text for discussion. Reprinted with permission from Elsevier Science.
Figure 6.14d shows the electron donation interaction (electrons are transferred from the initially fully occupied 5a molecular orbitals to the Fermi level of the metal, thus this is an electron donation interaction). Blyholder was first to discuss that CO chemisorption on transition metal involves both donation and backdonation of electrons.4 We now know both experimentally7 and theoretically96,98 that the electron backdonation mechanism is usually predominant, so that CO behaves on most transition metal surfaces as an overall electron acceptor. [Pg.302]

If molecules or atoms form a chemical bond with the surface upon adsorption, we call this chemisorption. To describe the chemisorption bond we need to briefly review a simplified form of molecular orbital theory. This is also necessary to appreciate, at least qualitatively, how a catalyst works. As described in Qiapter 1, the essence of catalytic action is often that it assists in breaking strong intramolecular bonds at low temperatures. We aim to explain how this happens in a simplified, qualitative electronic picture. [Pg.218]

Finally we look at the chemisorption of a molecule with a pair of bonding and antibonding orbitals on a transition metal (Fig. 6.25). This situation can be simply visualized with FI2, for which the bonding orbital contains two electrons and the antibonding orbital is empty, but other molecules can also be examined. In principle, we simply apply Section 6.4.2.2 twice, once to the bonding orbital, and once to the antibonding orbital of the molecule. This has been done in Fig. 6.25. [Pg.243]

Pt(ll 1) reveals that the contribution from the 5chemisorption bond is small, whereas the 2n-d interaction clearly strengthens the bond, as only the bonding region of this orbital is occupied. [Adapted from B. Hammer, Y. Morikawa and J.K. Norskov, Phys. Rev. Lett. 76 (1996) 2141.]... [Pg.251]

The strain or stress will either lead to narrower or broader d bands that are shifted up or down in energy, respectively. An upward shift leads to a stronger interaction with the 2jt orbital of adsorbed CO and thus to a stronger chemisorption bond. Stress has the opposite effect. [Pg.253]

If we restrict ourselves to the late transition metals the trends will, as for the CO chemisorption energy, be dominated by the interaction of the antibonding orbital with the d band and the leading term is... [Pg.257]

What happens with the outer orbitals of an atom when it approaches a metal surface Discuss the role of the atom s ionization potential and electron affinity in relation to the work function of the metal for the strength of the eventual chemisorption bond. [Pg.408]

Figure 2 displays a qualitative correlation between the increase or decrease in CO desorption temperature and relative shifts in surface core-level binding energies (Pd(3d5/2), Ni(2p3/2), or Cu(2p3/2) all measured before adsorbing CO) [66]. In general, a reduction in BE of a core level is accompanied by an enhancement in the strength of the bond between CO and the supported metal monolayer. Likewise, an opposite relationship is observed for an increase in core-level BE. The correlation observed in Figure 2 can be explained in terms of a model based on initial-state effects . The chemisorption bond on metal is dominated by the electron density of the occupied metal orbital to the lowest unoccupied 27t -orbital of CO. A shift towards lower BE decreases the separation of E2 t-Evb thus the back donation increases and vice versa. [Pg.85]

A series of papers by Shustorovi ch(63) and/or Baetzo1d(64) summarized in a recent article(65) have addressed the problem of chemisorption on metal surfaces in terms of electron accepting and donating interactions. Saillard and Hoffmann (66) developed qualitatively identical pictures of these interactions but starting from fragment orbital type analysis. These papers are only a few of the theoretical discussions that consider hydrogen activation, however we will use their approach because it address the problem in a fashion that can interpolate between the organometallic cluster and the bulk. [Pg.65]

The surface molecule model has been used to study chemisorption of hydrogen 47) and nitrogen 48) on tungsten (100). The parameters used in these calculations are collected in Table IV. Preliminary calculations on the diatomic molecules WH and WW showed that inclusion of tungsten 5 p orbitals is essential to produce a minimum in the energy/ distance curves. However, the repulsion due to inner electrons could be calculated by the empirical relationship ... [Pg.36]

The model of the metal surface, as described above, has been used recently by several authors for the interpretation of their results of chemisorption and catalytic studies 67-72), mostly without stating explicitly that the atomic orbitals are probably hybridized and can be approximated by purely atomic orbitals during the interaction only. The hybridization... [Pg.66]

It has also to be remembered that the band model is a theory of the bulk properties of the metal (magnetism, electrical conductivity, specific heat, etc.), whereas chemisorption and catalysis depend upon the formation of bonds between surface metal atoms and the adsorbed species. Hence, modern theories of chemisorption have tended to concentrate on the formation of bonds with localized orbitals on surface metal atoms. Recently, the directional properties of the orbitals emerging at the surface, as discussed by Dowden (102) and Bond (103) on the basis of the Good-enough model, have been used to interpret the chemisorption behavior of different crystal faces (104, 105). A more elaborate theoretical treatment of the chemisorption process by Grimley (106) envisages the formation of a surface compound with localized metal orbitals, and in this case a weak interaction is allowed with the electrons in the metal. [Pg.148]

Occupied molecular orbitals of the adsorbate with ionization potentials between 0 and hv- (p become visible. If one compares their binding energies with those in a UPS spectrum of a physisorbed multilayer of the same gas, one readily recognizes which of the molecular orbitals are involved in the chemisorption bond. For example, the adsorbate level in Fig. 3.19 has shifted a few eV with respect to its position indicated in the density of states picture (taken as the position in a physisorbed gas), indicating that the level is involved in the chemisorption bond. [Pg.79]

Figure 3.20 UPS spectra of CO chemisorbed on iron show that the 5a orbital has shifted down to higher binding energy as a result of chemisorption. CO largely desorbs from clean iron upon heating to 390 K. Potassium enhances the bond between CO and the metal and promotes the dissociation of CO at higher temperatures (adapted from Broden et al. [51 ]). Figure 3.20 UPS spectra of CO chemisorbed on iron show that the 5a orbital has shifted down to higher binding energy as a result of chemisorption. CO largely desorbs from clean iron upon heating to 390 K. Potassium enhances the bond between CO and the metal and promotes the dissociation of CO at higher temperatures (adapted from Broden et al. [51 ]).

See other pages where Orbital chemisorption is mentioned: [Pg.71]    [Pg.71]    [Pg.951]    [Pg.2222]    [Pg.37]    [Pg.44]    [Pg.50]    [Pg.61]    [Pg.90]    [Pg.157]    [Pg.243]    [Pg.244]    [Pg.250]    [Pg.334]    [Pg.86]    [Pg.10]    [Pg.135]    [Pg.1172]    [Pg.66]    [Pg.33]    [Pg.70]    [Pg.156]    [Pg.266]    [Pg.261]    [Pg.366]    [Pg.80]    [Pg.223]   
See also in sourсe #XX -- [ Pg.225 ]




SEARCH



Chemisorption orbital description

Chemisorption orbitals

Chemisorption orbitals

Molecular Orbital View of Chemisorption. A Summary

© 2024 chempedia.info