Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical rotatory dispersion tertiary

Tanford (1968) reviewed early studies of protein denaturation and concluded that high concentrations of Gdm-HCl and, in some cases, urea are capable of unfolding proteins that lack disulfide cross-links to random coils. This conclusion was largely based on intrinsic viscosity data, but optical rotation and optical rotatory dispersion (ORD) [reviewed by Urnes and Doty (1961) ] were also cited as providing supporting evidence. By these same lines of evidence, heat- and acid-unfolded proteins were held to be less completely unfolded, with some residual secondary and tertiary structure. As noted in Section II, a polypeptide chain can behave hydrodynamically as random coil and yet possess local order. Similarly, the optical rotation and ORD criteria used for a random coil by Tanford and others are not capable of excluding local order in largely unfolded polypeptides and proteins. The ability to measure the ORD, and especially the CD spectra, of unfolded polypeptides and proteins in the far UV provides much more incisive information about the conformation of proteins, folded and unfolded. The CD spectra of many unfolded proteins have been reported, but there have been few systematic studies. [Pg.224]

The secondary and tertiary structure of a partially purified 7S globulin was examined by Fukushima (7) based on optical rotatory dispersion, infrared and ultraviolet difference spectra. Antiparallel (5 -structure (352) and random coil (60%) predominated with only 5% helical structure present. The contribution of the three structures was calculated from molecular ellipticity values obtained by circular dichroism (11) and from the Moffitt parameters in ORD (11, 12). Between 210 and 250 nm, the experimental CD curve for the 7S protein was similar to the CD curve computed from ORD Moffitt parameters with the major dissimilarity occurring at 208-213 nm. [Pg.30]

Several factors must be considered for a particular biomacromolecular structure application that will affect the choice of spectroscopic methods. These include structural resolution necessary, chemical nature of biomacromolecule (protein, nucleic add, or glycan), amount/concentration of biopolymer available, sample preparation (solid or solution), solvents of interest, and desired structure information (secondary or tertiary structure). Structural resolution varies considerably for the various spectroscopic methods, with X-ray diffraction and NMR providing atomic resolution (high resolution) and ultraviolet (UV) absorption revealing merely information about the polarity of the chromophore s environment (low resolution). X-ray studies require crystals while NMR experiments prefer solutions in deuterated solvent. Solvent preferences can affect the choice of spectroscopic method as, for example, infrared (IR) encoimters strong interference from water, while optical rotatory dispersion (ORD) and circniar dichroism (CD) do not. Some of the commonly used spectroscopic methods in structural analyses of biomacromolecules will be discussed. [Pg.185]


See other pages where Optical rotatory dispersion tertiary is mentioned: [Pg.29]    [Pg.121]    [Pg.95]    [Pg.832]    [Pg.197]    [Pg.221]    [Pg.487]    [Pg.556]    [Pg.525]   
See also in sourсe #XX -- [ Pg.386 , Pg.387 , Pg.388 , Pg.389 , Pg.390 ]

See also in sourсe #XX -- [ Pg.386 , Pg.387 , Pg.388 , Pg.389 , Pg.390 ]




SEARCH



Rotatory dispersion

© 2024 chempedia.info