Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical radiation, atomic spectroscopy

As already indicated above, what one may consider a surface depends on the property under consideration. Adhesion is very much an outer atomic layer issue, unless one is dealing with materials like fibreboard in which the polymer resin may also be involved in mechanical anchoring onto the wood particles. Gloss and other optical properties are related to the penetration depth of optical radiation. The latter depends on the optical properties of the material, but in general involves more than a few micrometer thickness and therewith much more than the outer atomic layers only. It is thus the penetration depth of the probing technique that needs to be suitably selected with respect to the surface problem under investigation. Examples selected for various depths (< 10 nm, 10 s of nm, 100 nm, micrometer scale) have been presented in Chapter 10 of the book by Garton on Infrared Spectroscopy of Polymer Blends, Composites and Surfaces... [Pg.676]

The besl isolation of radiant energy can he achieved with flame spectrometers that incorporate either a prism sir grating monochromator, those with prisms having variable gauged entrance and exii slits. Both these spectrometers provide a continuous selection of wavelengths with resolving power sufficient lo separate completely most of the easily excited emission lines, and afford freedom from scattered radiation sufficient lo minimize interferences. Fused silica or quartz optical components are necessary to permit measurements in Ihe ultraviolet portion of the spectrum below 350 nanometers Sec also Analysis (Chemical) Atomic Spectroscopy Photometers and Spectra Instruments. [Pg.638]

R. Schinke Photodissociation Dynamics 2. L. Frommhold Collision-Induced Absorption in Gases 3. T. F. Gallacher Rydberg Atoms 4. M. Auzinsh and R. Ferber Optical Polarization of Molecules 5.1. E. McCarthy and E. Weigold Electron-Atom Collisions 6. V. Schmidt Electron Spectrometry of Atoms using Synchrotron Radiation 7. Z. Rudzikas Theoretical Atomic Spectroscopy... [Pg.428]

Atomic spectroscopy is the oldest instrumental elemental analysis principle, the origins of which go back to the work of Bunsen and Kirchhoff in the mid-19th century [1], Their work showed how the optical radiation emitted from flames is characteristic of the elements present in the flame gases or introduced into the burning flame by various means. It had also already been observed that the intensities of the element-specific features in the spectra, namely the atomic spectral lines, changed with the amount of elemental species present. Thus the basis for both qualitative and quantitative analysis with atomic emission spectrometry was discovered. These discoveries were made possible by the availability of dispersing media such as prisms, which allowed the radiation to be spectrally resolved and the line spectra of the elements to be produced. [Pg.373]

Traditionally, analytical atomic spectroscopy implied the use of electromagnetic radiation in the ultraviolet ( 200-350nm) and visible ( 350-800nm) region of the spectra for qualitative and quantitative analysis. With the use of some of the same sources to produce ions for detection using mass spectrometry, the term often encompasses the area of elemental mass spectroscopy. In this section the focus will remain on optical techniques. [Pg.259]

Plasma sources were developed for emission spectrometric analysis in the late-1960s. Commercial inductively coupled and d.c. plasma spectrometers were introduced in the mid-1970s. By comparison with AAS, atomic plasma emission spectroscopy (APES) can achieve simultaneous multi-element measurement, while maintaining a wide dynamic measurement range and high sensitivities and selectivities over background elements. As a result of the wide variety of radiation sources, optical atomic emission spectrometry is very suitable for multi-element trace determinations. With several techniques, absolute detection limits are below the ng level. [Pg.614]

Luminescence spectroscopy involves three related optical methods fluorescence, phosphorescence, and chemiluminescene. These methods utilize excited molecules of an analyte to give a species whose emission spectrum can provide information about the molecule. In fluorescence, atoms can be excited to a higher energy level by the absorption of photons of radiation. Some features of luminescence methods are increased sensitivity (in the order of three magnitudes smaller than absorption spectroscopy), larger linear range of concentration, and method selectivity (Parsons 1982). [Pg.155]

Analysis by atomic (or optical) emission spectroscopy is based on the study of radiation emitted by atoms in their excited state, ionised by the effect of high temperature. All elements can be measured by this technique, in contrast to conventional flames that only allow the analysis of a limited number of elements. Emission spectra, which are obtained in an electron rich environment, are more complex than in flame emission. Therefore, the optical part of the spectrometer has to be of very high quality to resolve interferences and matrix effects.-... [Pg.273]


See other pages where Optical radiation, atomic spectroscopy is mentioned: [Pg.64]    [Pg.457]    [Pg.12]    [Pg.18]    [Pg.213]    [Pg.213]    [Pg.225]    [Pg.54]    [Pg.151]    [Pg.567]    [Pg.158]    [Pg.158]    [Pg.1418]    [Pg.1387]    [Pg.552]    [Pg.1415]    [Pg.316]    [Pg.1779]    [Pg.2455]    [Pg.132]    [Pg.76]    [Pg.296]    [Pg.596]    [Pg.10]    [Pg.496]    [Pg.16]    [Pg.70]    [Pg.194]    [Pg.275]    [Pg.420]    [Pg.423]    [Pg.117]    [Pg.16]    [Pg.271]    [Pg.101]    [Pg.136]    [Pg.104]    [Pg.124]   
See also in sourсe #XX -- [ Pg.628 ]




SEARCH



Atom optics

Atomic spectroscopy

Optic radiations

Optical atomic spectroscopy

Optical radiation

Optical spectroscopy

Radiation, atomic spectroscopy

Spectroscopy radiation

© 2024 chempedia.info