Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oleyl alcohol, supported aqueous-phase

Supported aqueous-phase catalysts can also be used to advantage. These supported catalysts have a thin aqueous film adhering to silica gel that contains the water-soluble complex (131). These catalysts are particularly useful for the hydroformylation of substrates such as oleyl alcohol (132). Since these catalytic reactions occur at the phase boundary, characteristics such as the water content can cause changes both in the reactivity and in the linear branched chain ratio of the product aldehyde. [Pg.182]

The development of supported aqueous-phase catalysis (SAPC) opened the way to hydroformylating hydrophobic alkenes such as oleyl alcohol, octene, etc. (cf. Section 4.7 [17]). SAPC involves dissolving an aqueous-phase HRh(CO)(TPPTS)3 complex in a thin layer of water adhering to a silica surface. Such a catalyst shows a significantly high activity for hydroformylation. For classical liquid-liquid systems, the rate of hydroformylation decreases in the order 1-hexene > 1-octene > 1-decene however, with SAP catalysts, these alkenes react at virtually the same rate and the solubility of the alkene in the aqueous phase is no longer the ratedetermining factor [26]. [Pg.368]

Another possible way to separate they catalyst from the fatty products was found by Davis [52-54] and further investigated by Fell [55]. This new method is supported aqueous-phase catalysis (SAPC cf. Section 4.7). On a hydrophilic support, e.g., silicon oxide with a high surface area, a thin aqueous film is applied which contains the water-soluble rhodium catalyst, for instance HRh(CO)L3 with sodium TPPTS ligands. Oleyl alcohol and syngas react at the organic/aqueous interface and form the formylstearyl alcohol in a yield of 97%. The catalyst can be separated from the product by simple filtration without loss of activity. [Pg.599]

Supported aqueous phase catalysts are well known [29, 30]. In these systems, a thin film of water present on the surface of a polar solid support is used to immobilize metal complexes, which are nonvolatile or insoluble in a mobile gaseous or liquid organic phase, respectively [30]. The concept was used successfully, for example, for the hydroformylation of oleyl alcohol over a supported rhodium complex [29]. Here, it was suggested that the reaction occurred at the interface between the aqueous and organic phase. However, the volatility of water necessitated... [Pg.213]

The prototype reaction was the hydroformylation of oleyl alcohol (water insoluble) with a water-soluble rhodium complex, HRh(C0)[P(m-C6H4S03Na)3]3 (Figure 6.5). Oleyl alcohol was converted to the aldehyde (yield = 97%) using 2 mol % Rh with respect to the substrate and cyclohexane as the solvent, at 50 atmospheres CO/H2, and 100°C. The SAPCs were shown to be stable upon recycling, and extensive work proved that Rh is not leached into the organic phase. Since neither oleyl alcohol nor its products are water soluble, the reaction must take place at the aqueous-organic interface where Rh must be immobilized. Also, if the metal catalyst was supported on various controlled pore glasses with... [Pg.136]


See other pages where Oleyl alcohol, supported aqueous-phase is mentioned: [Pg.315]   


SEARCH



Alcohol phase

Oleyl

Oleyl alcohol

© 2024 chempedia.info