Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefins oxidative coupling

The direct methane conversion technology, which has received the most research attention, involves the oxidative coupling of methane to produce higher hydrocarbons (qv) such as ethylene (qv). These olefinic products may be upgraded to Hquid fuels via catalytic oligomerization processes. [Pg.78]

Properties. Liquid fuels derived from oxidative coupling/olefin oligomerisation processes would be expected to have properties similar to those derived from olefin oligomerisation pathways such as MTO/MOGD. [Pg.87]

The palladium chloride process for oxidizing olefins to aldehydes in aqueous solution (Wacker process) apparendy involves an intermediate anionic complex such as dichloro(ethylene)hydroxopalladate(II) or else a neutral aqua complex PdCl2 (CH2=CH2)(H2 0). The coordinated PdCl2 is reduced to Pd during the olefin oxidation and is reoxidized by the cupric—cuprous chloride couple, which in turn is reoxidized by oxygen, and the net reaction for any olefin (RCH=CH2) is then... [Pg.171]

The proposed catalytic cycle is shown in Scheme 31. Hence, FeCl2 is reduced by magnesium and subsequently coordinates both to the 1,3-diene and a-olefin (I III). The oxidative coupling of the coordinated 1,3-diene and a-olefin yields the allyl alkyl iron(II) complex IV. Subsequently, the 7i-a rearrangement takes place (IV V). The syn-p-hydride elimination (Hz) gives the hydride complex VI from which the C-Hz bond in the 1,4-addition product is formed via reductive elimination with regeneration of the active species II to complete the catalytic cycle. Deuteration experiments support this mechanistic scenario (Scheme 32). [Pg.53]

In most cases, the oxidative addition process consumes stoichiometric amount of Pd(OAc>2. One of the earliest examples of the use of palladium in pyrrole chemistry was the Pd(0Ac)2 induced oxidative coupling of A-methylpyrrole with styrene to afford a mixture of olefins 18 and 19 in low yield based on palladium acetate [28]. [Pg.39]

When furan or substituted furans were subjected to the classic oxidative coupling conditions [Pd(OAc)2 in refluxing HOAc], 2,2 -bifuran was the major product, whereas 2,3 -bifuran was a minor product [12,13]. Similar results were observed for the arylation of furans using Pd(OAc)2 [14]. The oxidative couplings of furan or benzo[i]furan with olefins also suffered from inefficiency [15]. These reactions consume at least one equivalent of palladium acetate, and therefore have limited synthetic utility. [Pg.269]

ET-induced cycloadditions of polycyclic olefins and cycloreversions of cyclobutane species have been studied by ESR spectroscopy [266]. Upon chemical and electrochemical reduction, 2,2 -distyrylbiphenyl rearranges by intramolecular coupling into a bis-benzylic dihydrophenanthrene dianion (Scheme 1), which can be either protonated to a 9,10 -dibenzyl-9,10-dihydrophenanthrene or oxidatively coupled to a cyclobutane species. It is interesting to note that the intramolecular bond... [Pg.117]

If anions R are oxidized in the presence of olefins, additive dimers (24) and substituted monomers (26) are obtained (Scheme 5, Table 8, and Ref. [94]). The products can be rationalized by the following pathway the radical R obtained by a le-oxidation from the anion R adds to the alkene to give the primary adduct (25), which dimerizes to afford the additive dimer (24) with regiospeciflc head-to-head connection of the two olefins, or couples with R to form the additive monomer (26). If the substituent Y in the olefin can stabilize a carbenium ion, (25) is oxidized to the cation (27), which reacts intra- or inter-molecularly with nucleophiles to give (28) or (29). [Pg.140]

Examples of catalytic formation of C-C bonds from sp C-H bonds are even more scarce than from sp C-H bonds and, in general, are limited to C-H bonds adjacent to heteroatoms. A remarkable iridium-catalyzed example was reported by the group of Lin [116] the intermolecular oxidative coupling of methyl ethers with TBE to form olefin complexes in the presence of (P Pr3)2lrH5 (29). In their proposed mechanism, the reactive 14e species 38 undergoes oxidative addition of the methyl C-H bond in methyl ethers followed by olefin insertion to generate the intermediate 39. p-hydride elimination affords 35, which can isomerize to products 36 and 37 (Scheme 10). The reaction proceeds under mild condition (50°C) but suffers from poor selectivity as well as low yield (TON of 12 after 24 h). [Pg.159]

The proposed mechanism of the above cycloisomerizations are depicted in Scheme 11.30. The oxidative coupling of a metal to an enyne yields a bicyclic metaUacyclopentene, which is a common intermediate. The reductive elimination and subsequent retro-[2+2] cycloaddition gave vinylcyclopentene derivatives, while the two patterns of P-elimination and subsequent reductive eUmination gave cychc 1,3- and 1,4-dienes, respectively. The existence of a carbene complex intermediate might explain the isomerization of the olefinic moiety. [Pg.290]

The formation of vinyl acetate via the oxidative coupling of ethylene and acetic acid was among the earliest Pd-catalyzed reactions developed (Sect. 2) [19,20]. Subsequent study of this reaction with higher olefins revealed that, in addition to C-2 acetoxylation, allylic acetoxylation occurs to generate products with the acetoxy group at the C-1 and C-3 positions (Scheme 14). The synthetic utihty of these products imderhes the substantial historical interest in these reactions, and both BQ and dioxygen have been used as oxidants. [Pg.106]

Electron-rich heterocycles can also be coupled with olefins in the presence of a suitable palladium(II) catalyst. The oxidative coupling requires the use of a stoichiometric amount of palladium however, unless a suitable oxidising agent is added to the reaction. In an early example N-sulphonylated pyrrole was reacted with 1,4-naphthoquinone in the presence of an equimolar amount of palladium acetate to give the coupled product in good yield (6.92.).124... [Pg.130]

Reaction that can be carried out by the oxidative coupling of radicals may also be initiated by irradiation with UV light. This procedure is especially useful if the educt contains olefinic double bonds since they are vulnerable to the oxidants used in the usual phenol coupling reactions. Photochemically excited benzene derivatives may even attack ester carbon atoms which is generally not observed with phenol radicals (I. Ninomiya, 1973 N.C. Yang, 1966). [Pg.295]

The direct oxidative carboxylation of olefins has great potential, and many advantages. Notably, it does not require the C02 to be free of dioxygen this is an especially attractive feature, as the cost to purify C02 is extremely high, and may discourage its use. Moreover, the direct oxidative carboxylation of olefins can couple two processes-the epoxidation of olefins, and the carbonation of epoxides. Hence, the process makes direct use of those olefins that are available commercially at low price, and which represent an abundant feedstock. Such an approach also avoids having to isolate the epoxide. [Pg.186]


See other pages where Olefins oxidative coupling is mentioned: [Pg.132]    [Pg.132]    [Pg.86]    [Pg.97]    [Pg.183]    [Pg.262]    [Pg.105]    [Pg.106]    [Pg.130]    [Pg.323]    [Pg.496]    [Pg.517]    [Pg.726]    [Pg.737]    [Pg.236]    [Pg.213]    [Pg.78]    [Pg.78]    [Pg.120]    [Pg.199]    [Pg.86]    [Pg.97]    [Pg.129]    [Pg.183]    [Pg.746]    [Pg.507]    [Pg.262]    [Pg.877]    [Pg.76]    [Pg.536]    [Pg.271]   
See also in sourсe #XX -- [ Pg.367 ]




SEARCH



Olefin coupling

Olefin oxide

Olefinations oxidative

Olefines, oxidation

Olefins oxidative coupling with

Olefins oxidative cross-coupling

Olefins, oxidation

Oxidative coupling reaction olefin

Oxidative olefin

Oxidative olefination

© 2024 chempedia.info