Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefins carbene complexes, from

Metal-Carbene Complexes from Olefin Metathesis Reactions. [Pg.131]

The reaction pathway shown is the widely accepted Chauvin mechanism " which involves a metalacycle formed by C—C bond formation within an Ti -olefin-carbene complex. It should be noted that the metal complex is not really a catalyst, but rather a promoter, because it is transformed into a new carbene. Theory suggests"" that the carbene fragment and the olefin should be parallel, as shown in the Scheme, for the C—C bond to form. It also suggests that a great deal of the added reactivity of the C systems is derived from the NHC enforcing this orientation on the carbene through steric interactions. [Pg.236]

In 2007, Nolan and co-workers presented a reaction in which a Pt-coordi-nated olefin was attacked by exogenous free carbene. Considering that binding of an olefin to metals such as Pt dramatically increased their electro-philicity, it is surprising this type of reaction has not been more commonly observed in the attempted preparation of carbene complexes from this class of precursors. [Pg.98]

Many other organometaUic compounds also react with carbonyl groups. Lithium alkyls and aryls add to the ester carbonyl group to give either an alcohol or an olefin. Lithium dimethyl cuprate has been used to prepare ketones from esters (41). Tebbe s reagent, Cp2TiCH2AlCl(CH2)2, where Cp = clyclopentadienyl, and other metal carbene complexes can convert the C=0 of esters to C=CR2 (42,43). [Pg.389]

Electron-rich olefins such as 36 have been used by Lappert in the synthesis of a great number of mono-, bis-, tris-, and tetrakiscarbene complexes from various transition metal species (62). Ru, Os, and Ir carbene complexes have been prepared from reactions with these olefins, e.g.,... [Pg.140]

Diazomethane is also decomposed by N O)40 -43 and Pd(0) complexes43 . Electron-poor alkenes such as methyl acrylate are cyclopropanated efficiently with Ni(0) catalysts, whereas with Pd(0) yields were much lower (Scheme 1)43). Cyclopropanes derived from styrene, cyclohexene or 1-hexene were formed only in trace yields. In the uncatalyzed reaction between diazomethane and methyl acrylate, methyl 2-pyrazoline-3-carboxylate and methyl crotonate are formed competitively, but the yield of the latter can be largely reduced by adding an appropriate amount of catalyst. It has been verified that cyclopropane formation does not result from metal-catalyzed ring contraction of the 2-pyrazoline, Instead, a nickel(0)-carbene complex is assumed to be involved in the direct cyclopropanation of the olefin. The preference of such an intermediate for an electron-poor alkene is in agreement with the view that nickel carbenoids are nucleophilic 44). [Pg.85]

The Lewis acid-Lewis base interaction outlined in Scheme 43 also explains the formation of alkylrhodium complexes 414 from iodorhodium(III) meso-tetraphenyl-porphyrin 409 and various diazo compounds (Scheme 42)398), It seems reasonable to assume that intermediates 418 or 419 (corresponding to 415 and 417 in Scheme 43) are trapped by an added nucleophile in the reaction with ethyl diazoacetate, and that similar intermediates, by proton loss, give rise to vinylrhodium complexes from ethyl 2-diazopropionate or dimethyl diazosuccinate. As the rhodium porphyrin 409 is also an efficient catalyst for cyclopropanation of olefins with ethyl diazoacetate 87,1°°), stj bene formation from aryl diazomethanes 358 and carbene insertion into aliphatic C—H bonds 287, intermediates 418 or 419 are likely to be part of the mechanistic scheme of these reactions, too. [Pg.238]

In order to rationalize the catalyst-dependent selectivity of cyclopropanation reaction with respect to the alkene, the ability of a transition metal for olefin coordination has been considered to be a key factor (see Sect. 2.2.1 and 2.2.2). It was proposed that palladium and certain copper catalysts promote cyclopropanation through intramolecular carbene transfer from a metal carbene to an alkene molecule coordinated to the same metal atom25,64. The preferential cyclopropanation of terminal olefins and the less hindered double bond in dienes spoke in favor of metal-olefin coordination. Furthermore, stable and metastable metal-carbene-olefin complexes are known, some of which undergo intramolecular cyclopropane formation, e.g. 426 - 427 415). [Pg.243]

In scrutinizing the various proposed reaction sequences in Eq. (26), one may classify the behavior of carbene complexes toward olefins according to four intimately related considerations (a) relative reactivities of various types of olefins (b) the polar nature of the metal-carbene bond (c) the option of prior coordination of olefin to the transition metal, or direct interaction with the carbene carbon and (d) steric factors, including effects arising from ligands on the transition metal as well as substituents on the olefinic and carbene carbons. Information related to these various influences is by no means exhaustive at this point. Consequently, some apparent contradictions exist which seem to cast doubt on the relevance of various model compound studies to conventional catalysis of the metathesis reaction, a process which unfortunately involves species which elude direct structural determination. [Pg.461]

Although the reaction of a titanium carbene complex with an olefin generally affords the olefin metathesis product, in certain cases the intermediate titanacyclobutane may decompose through reductive elimination to give a cyclopropane. A small amount of the cyclopropane derivative is produced by the reaction of titanocene-methylidene with isobutene or ethene in the presence of triethylamine or THF [8], In order to accelerate the reductive elimination from titanacyclobutane to form the cyclopropane, oxidation with iodine is required (Scheme 14.21) [36], The stereochemistry obtained indicates that this reaction proceeds through the formation of y-iodoalkyltitanium species 46 and 47. A subsequent intramolecular SN2 reaction produces the cyclopropane. [Pg.485]

The potential synthetic utility of titanium-based olefin metathesis and related reactions is evident from the extensive documentation outlined above. Titanium carbene complexes react with organic molecules possessing a carbon—carbon or carbon—oxygen double bond to produce, as metathesis products, a variety of acyclic and cyclic unsaturated compounds. Furthermore, the four-membered titanacydes formed by the reactions of the carbene complexes with alkynes or nitriles serve as useful reagents for the preparation of functionalized compounds. Since various types of titanium carbene complexes and their equivalents are now readily available, these reactions constitute convenient tools available to synthetic chemists. [Pg.497]

Dimethylsulhde can be eliminated from a-(dimethylsulfonium)alkyl complexes simply by heating (Figure 3.15). The resulting, very reactive, electrophilic iron carbene complexes cannot usually be isolated but are generated directly in the presence of a suitable reactant, e.g. an olefin. Cationic nickel [475] and tungsten [476] carbene complexes have been prepared by similar routes. [Pg.88]

The transition metal-catalyzed cyclopropanation of alkenes is one of the most efficient methods for the preparation of cyclopropanes. In 1959 Dull and Abend reported [617] their finding that treatment of ketene diethylacetal with diazomethane in the presence of catalytic amounts of copper(I) bromide leads to the formation of cyclopropanone diethylacetal. The same year Wittig described the cyclopropanation of cyclohexene with diazomethane and zinc(II) iodide [494]. Since then many variations and improvements of this reaction have been reported. Today a large number of transition metal complexes are known which react with diazoalkanes or other carbene precursors to yield intermediates capable of cyclopropanating olefins (Figure 3.32). However, from the commonly used catalysts of this type (rhodium(II) or palladium(II) carboxylates, copper salts) no carbene complexes have yet been identified spectroscopically. [Pg.105]

The most common byproducts encountered in cyclopropanations with diazoalkanes as carbene precursors are azines and carbene dimers , i.e. symmetric olefins resulting from the reaction of the intermediate carbene complex with the diazoalkane. The formation of these byproducts can be supressed by keeping the concentration of diazoalkane in the reaction mixture as low as possible. For this purpose, the automated, slow addition of the diazoalkane to a mixture of catalyst and substrate (e.g. by means of a pump or a syringe motor) has proven to be a very valuable technique. [Pg.116]

A series of reagents have been developed which are prepared in situ from a geminal dihalide or a dithioacetal [635,730] and a transition metal complex. Titanium-based reagents of this type olefinate a broad range of carbonyl compounds, including carboxylic acid derivatives (Table 3.12), and are a practical alternative to the use of isolated carbene complexes. [Pg.129]


See other pages where Olefins carbene complexes, from is mentioned: [Pg.466]    [Pg.241]    [Pg.23]    [Pg.639]    [Pg.178]    [Pg.63]    [Pg.65]    [Pg.229]    [Pg.234]    [Pg.261]    [Pg.369]    [Pg.207]    [Pg.109]    [Pg.209]    [Pg.217]    [Pg.141]    [Pg.240]    [Pg.213]    [Pg.152]    [Pg.151]    [Pg.155]    [Pg.156]    [Pg.157]    [Pg.8]    [Pg.124]    [Pg.178]    [Pg.291]    [Pg.127]    [Pg.89]    [Pg.155]    [Pg.158]   
See also in sourсe #XX -- [ Pg.215 , Pg.216 ]




SEARCH



Carbene Complexes from Olefin Metathesis Reactions

Carbene complexes from electron-rich olefins

Carbene-olefin

From carbenes

Olefin complexation

Olefin complexes

Olefines, complexes

© 2024 chempedia.info