Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefin metathesis carbene complexes

The mechanism for olefin metathesis is complex, and involves metal-carbene intermediates— intermediates that contain a metal-carbon double bond. The mechanism is drawn for the reaction of a terminal alkene (RCH=CH2) with Grubbs catalyst, abbreviated as Ru=CHPh, to form RCH = CHR and CH2 = CH2. To begin metathesis, Grubbs catalyst reacts with the alkene substrate to form two new metal-carbenes A and B by a two-step process addition of Ru=CHPh to the alkene to yield two different metallocyclobutanes (Step [1]), followed by elimination to form A and B (Steps [2a] and [2b]). The alkene by-products formed in this process (RCH=CHPh and PhCH=CH2) are present in only a small amount since Grubbs reagent is used catalytically. [Pg.1017]

In order to explain reactions of olefins with carbene complexes, the fomation of metallacyclobutane compounds has been postulated [equations (5.127)-(5.131)]. The validity of the carbene mechanism is supported by metathesis reactions of 1,7-octadiene... [Pg.707]

The olefins that undergo metathesis include most simple and substituted olefins cycHc olefins give linear high molecular-weight polymers. The mechanism of the reaction is beheved to involve formation of carbene complexes that react via cycHc intermediates, ie, metaHacycles. Industrial olefin metathesis processes are carried out with soHd catalysts (30). [Pg.168]

Acyclic diene molecules are capable of undergoing intramolecular and intermolec-ular reactions in the presence of certain transition metal catalysts molybdenum alkylidene and ruthenium carbene complexes, for example [50, 51]. The intramolecular reaction, called ring-closing olefin metathesis (RCM), affords cyclic compounds, while the intermolecular reaction, called acyclic diene metathesis (ADMET) polymerization, provides oligomers and polymers. Alteration of the dilution of the reaction mixture can to some extent control the intrinsic competition between RCM and ADMET. [Pg.328]

The possibility of being involved in olefin metathesis is one of the most important properties of Fischer carbene complexes. [2+2] Cycloaddition between the electron-rich alkene 11 and the carbene complex 12 leads to the intermediate metallacyclobutane 13, which undergoes [2+2] cycloreversion to give a new carbene complex 15 and a new alkene 14 [19]. The (methoxy)phenylcar-benetungsten complex is less reactive in this mode than the corresponding chromium and molybdenum analogs (Scheme 3). [Pg.24]

Non-heteroatom-stabilised Fischer carbene complexes also react with alkenes to give mixtures of olefin metathesis products and cyclopropane derivatives which are frequently the minor reaction products [19]. Furthermore, non-heteroatom-stabilised vinylcarbene complexes, generated in situ by reaction of an alkoxy- or aminocarbene complex with an alkyne, are able to react with different types of alkenes in an intramolecular or intermolecular process to produce bicyclic compounds containing a cyclopropane ring [20]. [Pg.65]

Abstract For many years after its discovery, olefin metathesis was hardly used as a synthetic tool. This situation changed when well-defined and stable carbene complexes of molybdenum and ruthenium were discovered as efficient precatalysts in the early 1990s. In particular, the high activity and selectivity in ring-closure reactions stimulated further research in this area and led to numerous applications in organic synthesis. Today, olefin metathesis is one of the... [Pg.223]

Although olefin metathesis had soon after its discovery attracted considerable interest in industrial chemistry, polymer chemistry and, due to the fact that transition metal carbene species are involved, organometallic chemistry, the reaction was hardly used in organic synthesis for many years. This situation changed when the first structurally defined and stable carbene complexes with high activity in olefin metathesis reactions were described in the late 1980s and early 1990s. A selection of precatalysts discovered in this period and representative applications are summarized in Table 1. [Pg.226]

Despite the numerous reports concerning NHC-Ru olefin metathesis initiators, a complex incorporating a carbene that has only one exocyclic substituent adjacent to the carbenic centre was not reported until 2008. Studies by Grubbs and co-workers led to the development of ruthenium-based catalysts bearing such carbene ligands, in this case incorporating thiazole-2-ylidenes [63] (Fig. 3.19). [Pg.75]


See other pages where Olefin metathesis carbene complexes is mentioned: [Pg.70]    [Pg.104]    [Pg.904]    [Pg.526]    [Pg.13]    [Pg.63]    [Pg.158]    [Pg.229]    [Pg.230]    [Pg.261]    [Pg.369]    [Pg.432]    [Pg.215]    [Pg.207]    [Pg.63]    [Pg.65]    [Pg.67]    [Pg.69]    [Pg.71]    [Pg.73]    [Pg.75]    [Pg.75]    [Pg.77]    [Pg.79]    [Pg.81]    [Pg.83]    [Pg.85]    [Pg.87]    [Pg.89]    [Pg.91]    [Pg.93]    [Pg.95]    [Pg.97]    [Pg.99]    [Pg.101]    [Pg.103]    [Pg.117]    [Pg.217]    [Pg.80]    [Pg.250]   
See also in sourсe #XX -- [ Pg.33 , Pg.34 ]




SEARCH



Carbene Complexes from Olefin Metathesis Reactions

Carbene complexes in olefin metathesis

Carbene complexes metathesis

Carbene-olefin

Carbenes metathesis

Metal carbene complexes in olefin metathesis

Olefin complexation

Olefin complexes

Olefin complexes metathesis

Olefin metathesis

Olefin metathesis using metal carbene complexes

Olefine metathesis

Olefines, complexes

Transition Metal-Carbene Complexes in Olefin Metathesis and Related Reactions

© 2024 chempedia.info