Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefin intermolecular

Bicyclic derivatives. Polyhydroxylated carbo-bicyclic derivatives may be regarded as carbasugars with the rigid structure resulting from the presence of the additional carbocyclic ring. The most convenient way for construction of the bicyclic skeleton consists of the Diels-Alder reaction of properly functionalized trienes (intramolecular version) or dienes and olefins (intermolecular). [Pg.241]

Unlike the intermolecular reaction, the intramolecular aminopalladation proceeds more easily[13,14,166], Methylindole (164) is obtained by the intramolecular exo amination of 2-allylaniline (163). If there is another olefinic bond in the same molecule, the aminopalladation product 165 undergoes intramolecular alkene insertion to give the tricyclic compound 166[178]. 2,2-Dimethyl-l,2-dihydroquinoline (168) is obtained by endo cyclization of 2-(3,3-dimethyiallyl)aniline (167). The oxidative amination proceeds smoothly... [Pg.43]

Dehydration to olefins, which sometimes accompanies the reaction of alcohols with DAST [95, 108], is seldom as extensive as with a-fluoroamines (FAR and 1,1,2,3,3,3 hexafluoropropyldiethylamine) but occurs in a few cases to the exclusion of fluonnation, thus, 9a-fluoro-11-hydroxysteroids give 9a fluoro-A -steroids [127, 128] Dehydration accompanied by Wagner-Meerwein rearrangement occurs during the fluonnation of testosterone [129] Intermolecular dehydration to form ethers in addition to fluorides is observed in the reaction of benzhydryl alcohols [104] (Table 6)... [Pg.229]

Acyclic diene molecules are capable of undergoing intramolecular and intermolec-ular reactions in the presence of certain transition metal catalysts molybdenum alkylidene and ruthenium carbene complexes, for example [50, 51]. The intramolecular reaction, called ring-closing olefin metathesis (RCM), affords cyclic compounds, while the intermolecular reaction, called acyclic diene metathesis (ADMET) polymerization, provides oligomers and polymers. Alteration of the dilution of the reaction mixture can to some extent control the intrinsic competition between RCM and ADMET. [Pg.328]

Non-heteroatom-stabilised Fischer carbene complexes also react with alkenes to give mixtures of olefin metathesis products and cyclopropane derivatives which are frequently the minor reaction products [19]. Furthermore, non-heteroatom-stabilised vinylcarbene complexes, generated in situ by reaction of an alkoxy- or aminocarbene complex with an alkyne, are able to react with different types of alkenes in an intramolecular or intermolecular process to produce bicyclic compounds containing a cyclopropane ring [20]. [Pg.65]

As stated above, olefin metathesis is in principle reversible, because all steps of the catalytic cycle are reversible. In preparatively useful transformations, the equilibrium is shifted to one side. This is most commonly achieved by removal of a volatile alkene, mostly ethene, from the reaction mixture. An obvious and well-established way to classify olefin metathesis reactions is depicted in Scheme 2. Depending on the structure of the olefin, metathesis may occur either inter- or intramolecularly. Intermolecular metathesis of two alkenes is called cross metathesis (CM) (if the two alkenes are identical, as in the case of the Phillips triolefin process, the term self metathesis is sometimes used). The intermolecular metathesis of an a,co-diene leads to polymeric structures and ethene this mode of metathesis is called acyclic diene metathesis (ADMET). Intramolecular metathesis of these substrates gives cycloalkenes and ethene (ring-closing metathesis, RCM) the reverse reaction is the cleavage of a cyclo-... [Pg.225]

The proposed reaction mechanism involves intermolecular nucleophilic addition of the amido ligand to the olefin to produce a zwitterionic intermediate, followed by proton transfer to form a new copper amido complex. Reaction with additional amine (presnmably via coordination to Cn) yields the hydroamination prodnct and regenerates the original copper catalyst (Scheme 2.15). In addition to the NHC complexes 94 and 95, copper amido complexes with the chelating diphosphine l,2-bis-(di-tert-bntylphosphino)-ethane also catalyse the reaction [81, 82]. [Pg.44]

The olefin cross metathesis (CM) can be described as the intermolecular metathesis of alkylidene fragments between two different olefins [133]. It can be farther divided into three main subtypes cross metathesis, ring opening cross metathesis (ROCM) and enyne cross metathesis (ECM) (Scheme 3.9). [Pg.90]

Olefin metathesis can also be used in intermolecular reactions.299 For example, a variety of functionally substituted side chains were introduced by exchange with the terminal double bond in 5.300 These reactions gave E Z mixtures. [Pg.763]

In spite of the numerous spectral observations of complex formation between aromatic and olefinic donors with the dihalogens, the preparations of the corresponding crystalline complexes have been hindered by their enhanced reactivity (as well as the relatively weak bonding). As such, only few examples of the X-ray structural characterization of the corresponding intermolecular associates are reported, the most notable exception being the dibromine complex with benzene. [Pg.156]

In a similar manner, the diffusion of hexane into dichloromethane solutions containing mixtures of the alkylammonium salts of bromide and the olefinic acceptors o-CA and TCNE result in the formation of brown-red crystals [23]. X-ray analysis reveals the (1 1) complex of bromide with o-CA, in which the anion is located over the center of the C - C bond of the acceptor moiety (Fig. 15b) and Br - C contacts are shortened by as much as 0.6 A relative to the sum of van der Waals radii (Table 3). In bromide complexes with TCNE, the location of the anion relative to the acceptor is variable. In fact, a 2 1 complex [(Br )2,TCNE] is isolated in which both anions reside over the olefinic bond when the tetraethylammonium salt of bromide is used. In comparison, if the tetrapropyl- or tetrabutylammonium salts of the same anion are employed, the (1 1) complexes [Br ,TCNE] are formed in which the bromide donors are shifted toward the cyano substituents (Fig. 15a). In both cases however, the short intermolecular separations that are characteris-... [Pg.164]

Recently, Narasaka and co-workers have found that 1-nitroalkyl radicals are generated by oxidation of aci-nitroanions with CAN, and they undergo the intermolecular addition to electron-rich olefins.61 For example, when oxidation is carried out in the presence of silylenol ethers, (3-nitroketones are formed in good yield. (3-Nitroketones are readily converted into enones on treatment with base (see Section 7.3), as shown in Eq. 5.43. [Pg.137]

Pd(OAc)2 works well with strained double bonds as well as with styrene and its ring-substituted derivatives. Basic substituents cannot be tolerated, however, as the failures with 4-(dimethylamino)styrene, 4-vinylpyridine and 1 -vinylimidazole show. In contrast to Rh2(OAc)4, Pd(OAe)2 causes preferential cyclopropanation of the terminal or less hindered double bond in intermolecular competition experiments. These facts are in agreement with a mechanism in which olefin coordination to the metal is a determining factor but the reluctance or complete failure of Pd(II)-diene complexes to react with diazoesters sheds some doubt on the hypothesis of Pd-olefin-carbene complexes (see Sect. 11). [Pg.91]

Intramolecular oxonium ylide formation is assumed to initialize the copper-catalyzed transformation of a, (3-epoxy diazomethyl ketones 341 to olefins 342 in the presence of an alcohol 333 . The reaction may be described as an intramolecular oxygen transfer from the epoxide ring to the carbenoid carbon atom, yielding a p,y-unsaturated a-ketoaldehyde which is then acetalized. A detailed reaction mechanism has been proposed. In some cases, the oxonium-ylide pathway gives rise to additional products when the reaction is catalyzed by copper powder. If, on the other hand, diazoketones of type 341 are heated in the presence of olefins (e.g. styrene, cyclohexene, cyclopen-tene, but not isopropenyl acetate or 2,3-dimethyl-2-butene) and palladium(II) acetate, intermolecular cyclopropanation rather than oxonium ylide derived chemistry takes place 334 ). [Pg.210]

Intermolecular cyclopropanation of olefins poses two stereochemical problems enantioface selection and diastereoselection (trans-cis selection). In general, for stereochemical reasons, the formation of /ra ,v-cyclopropane is kinetically more favored than that of cis-cyclopropane, and the asymmetric cyclopropanation so far developed is mostly /ram-selective, except for a few examples. Copper, rhodium, ruthenium, and cobalt complexes have mainly been used as the catalysts for asymmetric intermolecular cyclopropanation. [Pg.243]

The Heck reaction, a palladium-catalyzed vinylic substitution, is conducted with olefins and organohalides or pseudohalides are frequently used as reactants [15, 16], One of the strengths of the method is that it enables the direct monofunctionalization of a vinylic carbon, which is difficult to achieve by other means. Numerous elegant transformations based on Heck chemistry have been developed in natural and non-natural product synthesis. Intermolecular reactions with cyclic and acyclic al-kenes, and intramolecular cyclization procedures, have led to the assembly of a variety of complex and sterically congested molecules. [Pg.381]


See other pages where Olefin intermolecular is mentioned: [Pg.1104]    [Pg.73]    [Pg.294]    [Pg.137]    [Pg.149]    [Pg.463]    [Pg.750]    [Pg.63]    [Pg.65]    [Pg.249]    [Pg.329]    [Pg.81]    [Pg.117]    [Pg.59]    [Pg.149]    [Pg.880]    [Pg.880]    [Pg.142]    [Pg.94]    [Pg.162]    [Pg.570]    [Pg.750]    [Pg.306]    [Pg.147]    [Pg.158]    [Pg.76]    [Pg.218]    [Pg.222]    [Pg.240]    [Pg.247]    [Pg.433]    [Pg.246]    [Pg.148]   
See also in sourсe #XX -- [ Pg.397 , Pg.400 ]




SEARCH



Intermolecular cycloadditions achiral nitrile oxides/chiral olefins

Intermolecular cycloadditions achiral nitrile oxides/olefins

Ketone-olefin coupling intermolecular

Olefin complexes intermolecular

Olefin metathesis intermolecular

Olefins 2 + 2] intermolecular photodimerization

© 2024 chempedia.info