Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of pyridazine

In general, pyridazine can be compared with pyridine. It is completely miscible with water and alcohols, as the lone electron pairs on nitrogen atoms are involved in formation of hydrogen bonds with hydroxylic solvents, benzene and ether. Pyridazine is insoluble in ligroin and cyclohexane. The solubility of pyridazine derivatives containing OH, SH and NH2 groups decreases, while alkyl groups increase the solubility. Table 1 lists some physical properties of pyridazine. [Pg.3]

Pyridazine-3(2//)-thiones exist in the thione form (14), as is evident from an X-ray structure analysis of pyridazine-3(2//)-thione. 6-Mercaptopyridazine-3(2//)-thione is predominantly in the monothiolmonothione form (15) in aqueous solution and in the solid state, 6-hydroxypyridazine-3(2//)-thiones are in the hydroxythione form (16) and 6-aminopyridazine-3(2//)-thiones exist in the aminothione form (17) for further details see (73HC(28)755). Cinnoline-4(l//)-thiones and phthalazine-l(2//)-thione have been shown on the basis of UV data and ionization constants to exist in the thione forms. [Pg.5]

The H NMR spectrum of pyridazine shows two symmetrical quartets of an A2X2 or A2B2 type dependent on the solvent and concentration. The satellites have been used to obtain all coupling constants. Spectra of C-substituted pyridazines, methylthio- and methylsulfonyl-pyridazines, both as neutral molecules and as cations, N-1 and N-2 quater-nized species, pyridazinones, hydroxypyridazinones, A-oxides and 1,2-dioxides have been reviewed (b-73NMR88> and are summarized in Tables 6, 7 and 8. [Pg.6]

The mass spectrum of pyridazine is simple and high resolution measurements have shown that the ion at m/e 52 is composed of both (73.5%) and C3H2N (26.5%) ions ... [Pg.8]

The photoelectron spectra of pyridazine have been interpreted on the basis of many-body Green s function calculations both for the outer and the inner valence region. The calculations confirm that ionization of the first n-electron occurs at lower energy than of the first TT-electron (79MI21201). A large number of bands in the photoelectron spectrum of 3,6-diphenylpyridazine in stretched polymer sheets have been assigned to transitions predicted... [Pg.8]

There are various photochemical transformations of pyridazines, their corresponding benzo analogs, N-oxides and N-imides. Gas-phase photolysis of pyridazine affords nitrogen and vinylacetylene as the main products. Perfluoropyridazine gives first perfluoropyrazine, which isomerizes slowly into perfluoropyrimidine. [Pg.10]

Photolysis of pyridazine IV-oxide and alkylated pyridazine IV-oxides results in deoxygenation. When this is carried out in the presence of aromatic or methylated aromatic solvents or cyclohexane, the corresponding phenols, hydroxymethyl derivatives or cyclohexanol are formed in addition to pyridazines. In the presence of cyclohexene, cyclohexene oxide and cyclohexanone are generated. [Pg.12]

Transformation of pyridazine 1-oxides and their methyl derivatives into cyclopropyl ketones and/or substituted furans can also occur (Scheme 14). [Pg.12]

Phototransformation of pyridazine 1,2-dioxides sharply contrasts with that of pyridazine 1-oxides. Pyridazine 1,2-dioxide derivatives give 3a,6a-dihydroisoxazolo[5,4- f]isoxazoles (53) through postulated bisiminoxyl radicals. 3,6-Diphenylpyridazine 1,2-dioxide gives, besides the corresponding bicyclic derivative (53), 3-phenylisoxazole (54) and 4,5-diphenyl-furoxan (55). The last two products can be explained by generation of the nitrile oxide from the intermediate (53) with subsequent dimerization to the furoxan (55 Scheme 18) (79T1267). [Pg.13]

Photolysis of pyridazine IV-ethoxycarbonylimide results in the formation of the pyrrole derivative (56). The rearrangement is postulated to proceed via a diaziridine, followed by ring expansion to the corresponding 1,2,3-triazepine derivative and rearrangement to a triazabicycloheptadiene, from which finally a molecule of nitrogen is eliminated (Scheme 19) (80CPB2676). [Pg.13]

Direct oxidation of pyridazine and its derivatives with hydrogen peroxide (50-90%) in acetic acid gives, besides the isomeric mono 1- and 2-oxides, also the corresponding... [Pg.19]

When nitration of pyridazine iV-oxides is carried out with acyl nitrates (prepared in situ from acyl chlorides and silver nitrate) the reaction takes place at the /3-position relative to the iV-oxide group. Under these circumstances only mononitro derivatives are formed. For example, nitration of pyridazine 1-oxide with acetyl nitrate yields 3-nitropyridazine 1-oxide (17%) and 5-nitropyridazine 1-oxide (0.8%), whereas with benzoyl nitrate a better yield of 5-nitropyridazine 1-oxide is obtained. [Pg.21]

Bromination of pyridazin-3(2F/)-one 1-oxide and 5-hydroxypyridazine 1-oxide affords... [Pg.21]

Treatment of pyridazine 1-oxides with phosphorus oxychloride results in a-chlorination with respect to the N-oxide group, with simultaneous deoxygenation. When the a-position is blocked, substitution occurs at the y-position. 3-Methoxypyridazine 1-oxide, for example, is converted into 6-chloro-3-methoxypyridazine and 3,6-dimethylpyridazine 1-oxide into 4-chloro-3,6-dimethylpyridazine. [Pg.23]

A substituted acyl amino group can be introduced by reaction of pyridazine 1-oxide with A-phenylbenzonitrilium hexachloroantimonate 3-A-benzoylanilinopyridazine is formed (75JOC41). [Pg.24]

Reaction of pyridazine 1-oxide with phenylmagnesium bromide gives 1,4-diphenyl-butadiene as the main product and l-phenylbut-l-en-3-yne and 3,6-diphenylpyridazine as by-products, while alkyl Grignard reagents lead to the corresponding 1,3-dienes exclusively (79JCS(P1)2136>. [Pg.29]

In pyridazine, base-catalyzed hydrogen-deuterium exchange takes place at positions 4 and 5 more easily than at positions 3 or 6. Deuteration of pyridazine 1-oxide in NaOD/DiO... [Pg.29]

It has already been mentioned that some radical reactions can occur as side reactions by irradiation of pyridazine derivatives, especially in hydroxylic solvents. [Pg.30]

Practically all pyridazine-carboxylic and -polycarboxylic acids undergo decarboxylation when heated above 200 °C. As the corresponding products are usually isolated in high yields, decarboxylation is frequently used as the best synthetic route for many pyridazine and pyridazinone derivatives. For example, pyridazine-3-carboxylic acid eliminates carbon dioxide when heated at reduced pressure to give pyridazine in almost quantitative yield, but pyridazine is obtained in poor yield from pyridazine-4-carboxylic acid. Decarboxylation is usually carried out in acid solution, or by heating dry silver salts, while organic bases such as aniline, dimethylaniline and quinoline are used as catalysts for monodecarboxylation of pyridazine-4,5-dicarboxylic acids. [Pg.33]

Unsaturated hydrazones, unsaturated diazonium salts or hydrazones of 2,3,5-triketones can be used as suitable precursors for the formation of pyridazines in this type of cyclization reaction. As shown in Scheme 61, pyridazines are obtainable in a single step by thermal cyclization of the tricyanohydrazone (139), prepared from cyanoacetone phenylhydrazone and tetracyanoethylene (76CB1787). Similarly, in an attempted Fischer indole synthesis the hydrazone of the cyano compound (140) was transformed into a pyridazine (Scheme 61)... [Pg.41]

There are some recent examples of this type of synthesis of pyridazines, but this approach is more valuable for cinnolines. Alkyl and aryl ketazines can be transformed with lithium diisopropylamide into their dianions, which rearrange to tetrahydropyridazines, pyrroles or pyrazoles, depending on the nature of the ketazlne. It is postulated that the reaction course is mainly dependent on the electron density on the carbon termini bearing anionic charges (Scheme 65) (78JOC3370). [Pg.42]

A large number of pyridazines are synthetically available from [44-2] cycloaddition reactions. In one general method, azo or diazo compounds are used as dienophiles, and a second approach is based on the reaction between 1,2,4,5-tetrazines and various unsaturated compounds. The most useful azo dienophile is a dialkyl azodicarboxylate which reacts with appropriate dienes to give reduced pyridazines and cinnolines (Scheme 89). With highly substituted dienes the normal cycloaddition reaction is prevented, and, if the ethylenic group in styrenes is substituted with aryl groups, indoles are formed preferentially. The cycloadduct with 2,3-pentadienal acetal is a tetrahydropyridazine derivative which has been used for the preparation of 2,5-diamino-2,5-dideoxyribose (80LA1307). [Pg.48]

This synthetic appproach has been used in a few cases for the preparation of pyridazines from diazo compounds and cyclopropenes. In general, cycloadducts (176) are formed first and these rearrange in the presence of acid or alkali to pyridazines (Scheme 98) (69TL2659, 76H(5)40l). Tetrachlorocyclopropene reacts similarly and it was found that the stability of the bicyclic intermediates is mainly dependent on substitution (78JCR(S)40, 78JCR(M)0582>. [Pg.51]

There are several examples of the formation of pyridazines from other heterocycles, such as azirines, furans, pyrroles, isoxazoles, pyrazoles or pyrans and by ring contraction of 1,2-diazepines. Their formation is mentioned in Section 2.12.6.3.2. [Pg.52]

In a similar manner to the formation of pyridazines from AT-aminopyrroles, cinnolines or phthalazines are obtainable from the corresponding 1-aminooxindoles or 2-amino-phthalimides. If the relatively inaccessible 1-aminooxindoles are treated with lead tetraacetate, mercuric acetate, r-butyl hypochlorite (69JCS(C)772) or other agents, cinnolones are formed as shown in Scheme 105. The reaction was postulated to proceed via an intermediate... [Pg.53]

The most useful syntheses of pyridazines and their alkyl and other derivatives begins with the reaction between maleic anhydride and hydrazine to give maleic hydrazide. This is further transformed into 3,6-dichloropyridazine which is amenable to nucleophilic substitution of one or both halogen atoms alternatively, the halogen(s) can be replaced by hydrogen as shown in Scheme 110. In this manner a great number of pyridazine derivatives are prepared. [Pg.55]

Two ring systems derived from pyrazole have been studied more recently. The 4 -pyrazole ring (25) forms quaternary salts (26) with fair ease, and, as in the case of pyridazine (see Section IV, C), the direction of quatemization is controlled by the nature of R and... [Pg.17]

The mesomeric effect of the C=S linkage is very pronounced and is responsible for the facile quaternization of heterocyclic N-alkylated thiones (159) this effect is operative even when such a shift does not increase the aromaticity of the ring. Thione derivatives of pyridazine, benzothiazole, quinazoline, 1,3-thiazine, triazole,and isoindole are examples of compounds which readily form quaternary salts. [Pg.51]


See other pages where Of pyridazine is mentioned: [Pg.20]    [Pg.3]    [Pg.4]    [Pg.4]    [Pg.6]    [Pg.14]    [Pg.17]    [Pg.17]    [Pg.18]    [Pg.20]    [Pg.20]    [Pg.22]    [Pg.33]    [Pg.40]    [Pg.42]    [Pg.44]    [Pg.46]    [Pg.49]    [Pg.54]    [Pg.365]    [Pg.19]   
See also in sourсe #XX -- [ Pg.8 , Pg.69 , Pg.310 ]




SEARCH



Amination of pyridazines

Basicity of pyridazine

Basicity of pyridazines

Chemistry of pyrido pyridazines

Complexes of pyridazines

Diels-Alder reaction of pyridazines

Kolar, P, TiSler, M., Recent Advances in the Chemistry of Pyridazines

Nitration of pyridazines

Nucleophilic aromatic of pyridazines

Nucleophilic substitution—continued of pyridazines

Of pyridazine N-oxides

Of pyrido pyridazines

Raman spectra of pyridazines

Reduction of pyridazines

Ring Transformations of Pyridazines and Other Heterocycles to Pyrazines

Ring contractions of pyridazines

Structure of pyridazines

Synthesis of Pyridazines via Two Bond Formation

Typical Reactivity of the Diazine Pyridazine, Pyrimidine and Pyrazine

Typical reactivity of the diazines pyridazine, pyrimidine and pyrazine

© 2024 chempedia.info