Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of diethyl ether

Ester formation. Heat under very efficient reflux 1 ml. of diethyl ether, 4 ml. of glacial acetic acid and i ml. of cone. H2SO4 for ro minutes. Distil off 2 ml. of liquid. Use a few drops of this liquid for the hydroxamic add test for esters (p. 334). Use the remainder for other tests for esters (p. 354). [Pg.396]

Heat together under very efficient water reflux 1 g. of freshly fused dry powdered ZnClg, 2 ml. of diethyl ether and 0 5 g. of 3,5 -dinitrobenzoyl chloride for 2 hours. Shake the product with 5 ml. of water and ther add 10% NaOH solution until all the ZnCl, and excess of 3,5-dinitro> benzoyl chloride and 3,5-dinitrobenzoic acid have gone into solution. Filter at the pump and recrystallise from petroleum (b.p. 40-60°) to obtain ethyl 3,5-dinitrobenzoate, m.p. 93°. (M ps. of other 3,5 dinitro-benzoates, p. 536.)... [Pg.396]

Ether. The most satisfactory method for the removal of (diethyl) ether is either on a steam bath fed from an external steam supply or by means of an electrically-heated, constant-level water bath (Fig. 77, 5, 1). If neither of these is available, a water bath containing hot water may be used. The hot water should be brought from another part of the laboratory under no circumstances should there be a free flame under the water bath. It caimot be too strongly emphasised that no flame whatsoever may be present in the vicinity of the distillation apparatus a flame 10 feet away may ignite diethyl ether if a continuous bench top lies between the flame and the still and a gentle draught happens to be blowing in the direction of the flame. [Pg.90]

The preparation of diethyl ether is described here for the sake of completeness. It is an unsuitable exercise for beginners. Di-n-butyl ether (Section 111,57) offers an excellent alternative. [Pg.310]

A mixture of 0.40 mol of propargyl chloride and 150ml of dry diethyl ether was cooled at -90°C (liquid nitrogen bath) and a solution of 0.40 mol of ethyl-lithium (note 1) in about 350 ml of diethyl ether (see Exp. 1) was added with vigorous stirring and occasional cooling (note 2). The temperature of the reaction mixture was kept between -70 and -90°C. The formation of the lithium derivative proceeded almost instantaneously, so that the solution obtained could be used directly after the addition of the ethyl 1ithium, which was carried out in 15-20 min. This lithium acetylide solution is very unstable and must be kept below -60°C. [Pg.24]

To a solution of 0.30 mol of ethyllithium (note 1) in about 270 ml of diethyl ether (see Chapter II, Exp. 1) v/as added 0.30 mol of methoxyallene at -20°C (see Chapter IV, Exp. 4) at a rate such that the temperature could be kept between -15 and -2Q°C. Fifteen minutes later a mixture of 0.27 mol of >z-butyl bromide and 100 ml of pure, dry HMPT ivas added in 5 min with efficient cooling, so that the temperature of the reaction mixture remained below 0°C. The cooling bath was then removed and the temperature was allowed to rise. After 4 h the brown reaction mixture was poured into 200 ml of ice-water. The aqueous layer was extracted twice with diethyl ether. The combined solutions were washed with concentrated ammonium chloride solution (which had been made slightly alkaline by addition of a few millilitres of aqueous ammonia, note 2) and dried over potassium carbonate. After addition of a small amount (2-5 ml) of... [Pg.37]

A solution of a-lithiomethoxyallene was prepared from nethoxyal lene and 0.20 mol of ethyllithiurn (note 1) in about 200 ml of diethyl ether (see Chapter II, Exp. 15). The solution was cooled to -50°C and 0.20 mol of ethylene oxide was added immediately. The cooling bath was removed temporarily and the temperature was allowed to rise to -15 c and was kept at this level for 2.5 h. The mixture was then poured into 200 ml of saturated ammonium chloride solution, to which a few millilitres of aqueous ammonia had been added (note 2). After shaking the layers were separated. The aqueous layer was extracted six times with small portions of diethyl ether. The combined ethereal solutions were dried over sodium sulfate and subsequently concentrated in a water-pump vacuum. Distillation of the... [Pg.39]

In a similar way HjC=C=C(0CH3)(SnBuj), n 1.4955 (undistilled) was prepared in almost quantitative yield from 0.12 mol of butyllithium in 75 ml of hexane and 75 ml of diethyl ether, 0.14 mol of methoxyallene and 0.10 mol of tributyl-tin chloride. The product contained 8-10% of an impurity, possibly Bu3Sn-CH2CEC-0CH3. [Pg.42]

Exp. 4) with cooling to about -20°C. The addition was carried out in about 10 min. Ten minutes later the solution was cooled to -60°C and a mixture of 0.20 mol of dimethyl disulfide and 50 ml of diethyl ether was added in 15 min with efficient cooling, so that the temperature could be kept below -40°C. Five minutes after the addition the mixture was poured into ice-water and three extractions with diethyl ether were carried out. The combined solutions were dried over magnesium sulfate and concentrated in a water-pump vacuum. Distillation of... [Pg.42]

A solution of 0.60 mol of ethyllithium (note 1) in about 400 ml of diethyl ether (see Chapter II, Exp. 1) was added in 30 min to a mixture of 0.25 mol of 1,4-diethoxy-2-butyne (see Chapter VIII-6, Exp. 8) and 100 ml of dry diethyl ether. The temperature of the reaction mixture was kept between -40 and -45°C. Fifteen minutes after the addition had been completed, 0.5 mol of methyl iodide was added at -40 C, then 100 ml of dry HMPT (for the purification see ref. 1) were added dropwise in 15 min while keeping the temperature at about -40°C. Thirty minutes after this addition the cooling bath was removed, the temperature was allowed to rise and stirring was continued for 3 h. The mixture was... [Pg.45]

To a solution of 0.50 tnol of ethyllithium in about 450 tnl of diethyl ether (see Chapter II, Exp. 1) was added 0.20 mol of 1-heptyne or butylallene (see Chapter VI, Exp. 1) with cooling below Q°C. After the addition the cooling bath was removed and the thermometer-gas outlet combination was replaced with a reflux condenser. The solution was heated under reflux for 6 h. The thermometer-gas outlet was again placed on the flask and the yellow suspension was cooled to -50°C. Trimethylchlorosilane (0.20 mol) was added dropwise in 10 min, while keeping the temperature between -40 and -35°C. After having kept the mixture for an additional 30 min at -30°C, it was poured into 200 ml of ice-water. The aqueous layer was extracted three times with small portions of diethyl ether. [Pg.53]

A suspension of di1ithiohexyne in diethyl ether was made from 0.20 mol of 1-hexyne and 0.5 mol ethyllithium in 400 ml of diethyl ether in the same way as described for 1-heptyne (see this chapter, Exp. 27). The suspension was cooled to -40°C and at this temperature a solution of 0.20 mol of ethylene oxide in 50 ril of diethyl ether was added in 15 min, the brown colour changing into yellow. Subsequently the temperature was allowed to rise graduallyduring 1 h to +5°C. [Pg.53]

To absolution of 1.00 mol of ethyl lithium in 800-900 ml of diethyl ether (see Chapter II, Exp. 1) was added, with cooling between -20 and -10°C, 0.50 nol of dry propargyl alcohol, dissolved in 100 ml of diethyl ether. Subsequently 1.1 mol of trimethylchlorosilane was introduced over a period of 25 min with cooling between -15 and +5°C. After stirring for an additional 2 h at about 30°C the suspension was poured into a solution of 30 g of acetic acid in 150 ml of water. After stirring for 1 h at room temperature the layers were separated and the aqueous layer v/as extracted four times with diethyl ether. The combined ethereal solutions were washed with sodium hydrogen carbonate solution in order to neutralize acetic acid, and were then dried over magnesium sulfate. The diethyl ether was removed by evaporation in a water-pump vacuum and the residue distilled... [Pg.58]

In the flask was placed a solution of 0.44 mol of butyllithium in about 300 ml of hexane. To this solution were added, with coaling below -20°C, 800, 600 and 400 ml of dry diethyl ether (note 1) in the case of R = CH3, C2H5 and tert.-CuHj or Me3Si, respectively. Subsequently 0.46 mol of the alkyne [in the case of R = CH3, C2H5 a cooled (-30°C) solution in 50 ml of diethyl ether] was added in about 10 min, while keeping the temperature below -20 c. The suspension (in the... [Pg.60]

A solution of 0.40 mol of ethyllithium in about 350 ml of diethyl ether (see Chapter II, Exp. 1) was transferred into the flask, which previously had been filled with nitrogen. The solution was cooled to -50°C and a cold solution (-30°C) of 0.43 mol of propyne in 50 ml of dry diethyl ether was added at a rate such that the temperature could be kept below -20°C. A solution of 0.45 mol of cyanogen chloride in 100 ml of diethyl ether, cooled at about 0°C, was then added in... [Pg.62]

To a solution of 0.20 mol of LiCEC-CH2Cl in about 300 ml of diethyl ether (see Chapter II, Exp. 16) was added in 15 min with vigorous stirring and cooling between -75 and -90°C (liquid nitrogen bath, note 1) a mixture of 0.20 mol of... [Pg.65]

A solution of (CH3)3C-CH=C=CLi, obtained by addition at -60°C of 0.20 mol of tert.-butylallene (see Chapter VI, Exp. 2) to a solution of 0.25 mol of ethyllithium in about 200 ml of diethyl ether (see Chapter II, Exp. 1) was warmed to 25°C and held at this temperature for 15 min. Subsequently the solution was cooled to below 0°C and 50 ml of saturated NH,C1 solution were added dropwise with vigorous stirring, keeping the temperature below 2o C. The upper layer v as separated off and the aqueous layer was extracted twice with 25-ml portions of diethyl ether. The combined solutions were dried over a small amount of magnesium sulfate. Slow distillation through a 40-cm Widmer column gave neopentyl acetylene (b.p. 76°C/750 mmHg, 20... [Pg.103]

To a solution of 0.05 mol of 4-phenyl-1,2-butadiene (see Chapter V, Exp. 19) was added in 10 min at -25 to -35°C a solution of 0.10 mol of ethyllithium in 80 ml of diethyl ether (see Chapter II, Exp. 1). After the addition the cooling bath was removed and the reaction mixture was warmed to 30 C in about 15 min and held at this temperature for an additional 15 min. The brown solution was then cautiously poured into 200 ml of ice-water. After separation of the layers four extractions with diethyl ether were carried out. The combined ethereal solutions... [Pg.103]


See other pages where Of diethyl ether is mentioned: [Pg.841]    [Pg.12]    [Pg.14]    [Pg.17]    [Pg.17]    [Pg.22]    [Pg.31]    [Pg.35]    [Pg.36]    [Pg.37]    [Pg.40]    [Pg.42]    [Pg.44]    [Pg.46]    [Pg.47]    [Pg.54]    [Pg.54]    [Pg.61]    [Pg.61]    [Pg.62]    [Pg.62]    [Pg.62]    [Pg.63]    [Pg.65]    [Pg.65]    [Pg.68]    [Pg.82]    [Pg.101]    [Pg.102]    [Pg.105]    [Pg.106]    [Pg.109]    [Pg.111]   
See also in sourсe #XX -- [ Pg.106 ]




SEARCH



Acid-Catalyzed Formation of Diethyl Ether from Ethyl Alcohol

Diethyl ether

Diethyl ether heat of vaporization

Diethyl ether preparation of absolute

Diethyl ether removal of peroxides

Dipole moment of diethyl ether

Ethyloxonium ion as intermediate in formation of diethyl ether

ONTENTS vii 2 The H Spectrum of Diethyl Ether

Rapid purification of diethyl ether

© 2024 chempedia.info