Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of 1-butanol

The example of Section XI-5B may be completed as follows. It is found that 0 = 0.5 at a butanol concentration of 0.3 g/100 cm. The heat of solution of butanol is 25 cal/g. The molecular area of adsorbed butanol is 40 A. Show that the heat of adsorption of butanol at this concentration is about 50 ergs/cm. ... [Pg.421]

Succinic acid diesters are also obtained by one-step hydrogenation (over Pd on charcoal) and esterification of maleic anhydride dissolved in alcohols (40) carbonylation of acrylates in the presence of alcohols and Co complex catalysts (41—43) carbonylation of ethylene in alcohol in the presence of Pd or Pd—Cu catalysts (44—50) hydroformylation of acetylene with Mo and W complexes in the presence of butanol (51) and a biochemical process from dextrose/com steep Hquor, using Jinaerobiumspirillum succiniciproducens as a bacterium (52). [Pg.535]

Fermentative Manufacture. Throughout the years, riboflavin yields obtained by fermentation have been improved to the point of commercial feasibiUty. Most of the riboflavin thus produced is consumed in the form of cmde concentrates for the enrichment of animal feeds. Riboflavin was first produced by fermentation in 1940 from the residue of butanol—acetone fermentation. Several methods were developed for large-scale production (41). A suitable carbohydrate-containing mash is prepared and sterilised, and the pH adjusted to 6—7. The mash is buffered with calcium carbonate, inoculated with Clostridium acetohutylicum and incubated at 37—40°C for 2—3 d. The yield is ca 70 mg riboflavin/L (42) (see Fermentation). [Pg.78]

The largest volume commercial derivatives of 1-butanol are -butyl acrylate [141-32-2] and methacrylate [97-88-1] (10). These are used principally ia emulsion polymers for latex paints, ia textile appHcations and ia impact modifiers for rigid poly(vinyl chloride). The consumption of / -butanol ia the United States for acrylate and methacrylate esters is expected to rise to 182,000—186,000 t by 1993 (10). [Pg.358]

Ethanol s use as a chemical iatemiediate (Table 8) suffered considerably from its replacement ia the production of acetaldehyde, butyraldehyde, acetic acid, and ethyUiexanol. The switch from the ethanol route to those products has depressed demand for ethanol by more than 300 x 10 L (80 x 10 gal) siace 1970. This decrease reflects newer technologies for the manufacture of acetaldehyde and acetic acid, which is the largest use for acetaldehyde, by direct routes usiag ethylene, butane (173), and methanol. Oxo processes (qv) such as Union Carbide s Low Pressure Oxo process for the production of butanol and ethyUiexanol have totaUy replaced the processes based on acetaldehyde. For example, U.S. consumption of ethanol for acetaldehyde manufacture declined steadily from 50% ia 1962 to 37% ia 1964 and none ia 1990. Butadiene was made from ethanol on a large scale duriag World War II, but this route is no longer competitive with butadiene derived from petroleum operations. [Pg.415]

The relative basicity and acidity of isothiazole and its methyl derivatives have been compared by IR spectroscopy (77MI41702). The isothiazoles, dissolved in inert solvents (e.g. CCI4, CS2) containing traces of butanol (a proton donor), interact with the butanol OH... [Pg.141]

A solution of 0.7 g (18 mmoles) of potassium in 35 ml of /-butanol is added to a boiling solution of 5 g (13 mmoles) of 5a-cholestan-3-one in 50 ml of benzene and 25 ml of /-butanol. A total of 5 ml (11.4 g, 80 mmoles) of methyl iodide in 50 ml of benzene is then added and refluxing is continued for 3 min. The solution is cooled, ice is added and the product is isolated by extraction with ether. The crystalline residue in light petroleum solution is chromatographed on 300 g of alumina. Elution with light petroleum yields initially 0.55 g (10%) of 2,2-dimethyl-5a-cholestan-3-one mp 111-113° [o(]d 77° (CHCI3), after crystallization from ether-methanol. Further elution affords 1.01 g (20%) of 2a-methyl-5a-cholestan-3-one mp 119-120° [a]o 32° (CHCI3), after crystallization from ether-methanol. [Pg.92]

Potassium /-butoxide is prepared by dissolving potassium metal in t-butanol followed by removal of the excess of -butanol by distillation under reduced pressure. The resultant cake is powdered and used directly in the dibromocarbene additions. [Pg.370]

Hydroxycortisone BMD) (48) A solution of 4 g of 17a,20 20,21-bis-methylenedioxypregn-4-ene-3,l 1-dione (cortisone BMD) (46) dissolved in 300 ml of t-butanol and 5 ml of water is treated with 34 ml of 35 % hydrogen peroxide and 0.45 g of osmium tetroxide predissolved in 36 ml of /-butanol. The resulting mixture is allowed to stand at room temperature for 2 days. Diol (47) which crystallizes during the reaction is collected by filtration and washed with /-butanol and water. The filtrate is diluted with ethyl acetate and washed sequentially with aqueous sodium chloride, aqueous 10% sodium bisulfite, aqueous 10% sodium bicarbonate and finally with water to neutrality. The solvent is evaporated and a second crop of the diol (47) is collected, providing a total of about 3.8 g. [Pg.423]

To a stirred suspension of 5 parts of N-(4-chlorophenyl)-N-(4-piperidinyl)benzeneacetamide, 5 parts of sodium carbonate, a few crystals of potassium iodide in 200 parts of butanol is added dropwise 4 parts of 2-bromopropane at room temperature. After the addition is complete, the whole is stirred and refluxed for 20 hours. Then the second portion of 4 parts of 2-bromopropane is added and stirring and refluxing is continued for another 19 hours. The reaction mixture is cooled, filtered and the filtrate is evaporated. From the oily free bese, the hydrochloride salt is prepared in the conventional manner in 1,1 -oxybisethane and 2-propanone. The precipitated solid salt is filtered off and crystallized from a mixture of 2-propanone and 2-propanol, yielding 2 parts of N-(4-chlorophenyl)-N-[1-(1-methylethyl)-4-piperidinyl] benzeneacetamide hydrochloride melting point 263°C. [Pg.888]

A mixture of methanol and butanol or isobutanol in water with a ratio of 4 4 22 in the grafting process produces a higher graft yield than a mixture of butanol or isobutanol in water with a ratio of 8 22. [Pg.538]

Fradet2275 studied this exchange reaction in the case of tetrabutoxytitanium and 1-octadecanol by determining the amount of butanol released. It appears that the true catalyst is not Ti(OBu)4 but a compound containing both butoxy and 1-octadecyloxy groups. [Pg.85]

Fig. 3. Eleotrooapillary curves for various concentrations of butanol in water. (Taken from Bockris etal., 1963.)... Fig. 3. Eleotrooapillary curves for various concentrations of butanol in water. (Taken from Bockris etal., 1963.)...
In some cases, the use of a large excess of alcohol is an option to drive the reaction to completion. Alcoholysis of glutamic acid dimethyl ester derivatives with acylase I was regio- and enantioselective (Figure 6.15). An excess of butanol was used as nucleophile and solvent [62]. [Pg.140]

Malondialdehyde (MDA) was determined with thiobarbituric acid as described by Mihara et al. (ref. 15). The absorbance of butanol phase containing the aldehyde was measured at 532 nm. Calculations were made using the extinction coefficient according to Casini et al. (ref. 16). [Pg.390]

DMSO or other sulfoxides react with trimethylchlorosilanes (TCS) 14 or trimefhylsilyl bromide 16, via 789, to give the Sila-Pummerer product 1275. Rearrangement of 789 and further reaction with TCS 14 affords, with elimination of HMDSO 7 and via 1276 and 1277, methanesulfenyl chloride 1278, which is also accessible by chlorination of dimethyldisulfide, by treatment of DMSO with Me2SiCl2 48, with formation of silicon oil 56, or by reaction of DMSO with oxalyl chloride, whereupon CO and CO2 is evolved (cf also Section 8.2.2). On heating equimolar amounts of primary or secondary alcohols with DMSO and TCS 14 in benzene, formaldehyde acetals are formed in 76-96% yield [67]. Thus reaction of -butanol with DMSO and TCS 14 gives, via intermediate 1275 and the mixed acetal 1279, formaldehyde di-n-butyl acetal 1280 in 81% yield and methyl mercaptan (Scheme 8.26). Most importantly, use of DMSO-Dg furnishes acetals in which the 0,0 -methylene group is deuter-ated. Benzyl alcohol, however, affords, under these reaction conditions, 93% diben-zyl ether 1817 and no acetal [67]. [Pg.201]

By way of illustration, taking the simple esterification of butanol with acetic acid, the balanced equation for the reaction is ... [Pg.45]

Thanks to this model it is possible to calculate the quantity of 1-butanol by percentage and weight from which the flashpoint of cyclohexanol decreases significantly. It is found to be 0.14% of butanol (molar fraction 0.002). TNs calculation was made supposing there is no pentanol in the mixture and a flashpoint target at 56.64 C, the lower limit of the confidence interval was at 95% of pure cyclohexanol. [Pg.70]


See other pages where Of 1-butanol is mentioned: [Pg.72]    [Pg.411]    [Pg.103]    [Pg.294]    [Pg.376]    [Pg.92]    [Pg.199]    [Pg.423]    [Pg.429]    [Pg.442]    [Pg.267]    [Pg.673]    [Pg.769]    [Pg.1147]    [Pg.1180]    [Pg.101]    [Pg.6]    [Pg.919]    [Pg.41]    [Pg.782]    [Pg.81]    [Pg.78]    [Pg.79]    [Pg.125]    [Pg.215]    [Pg.10]    [Pg.197]    [Pg.45]    [Pg.70]    [Pg.227]    [Pg.227]    [Pg.228]   
See also in sourсe #XX -- [ Pg.331 ]




SEARCH



2- Butanol, 3-methylsynthesis via oxidation of organoboranes

2-Butanol via oxidation of organoboranes

Borane, butyldihydroxyoxidation formation of butanol

Butanol Fermentations of Materials Other Than Molasses and Grains

Dehydration of 2-butanol

Dehydration of 2-methyl-2-butanol

Enantiomers of 2 butanol

Estimate Thermal Conductivity of n-Butanol

Hydride Shift in Dehydration of 1-Butanol

Metabolic Engineering of Clostridium acetobutylicum for Butanol Fermentation

Oxidation of 2-butanol

Peculiarities of the Butanol Fermentation as They Affect Its Industrial Development

Protection of Butanol-Acetone Fermentation against Phage

Test Method for Kauri-Butanol Value of Hydrocarbon Solvents

© 2024 chempedia.info