Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ocean uranium

This removal may also include diffusion of soluble U(VI) from seawater into the sediment via pore water. Uranium-organic matter complexes are also prevalent in the marine environment. Organically bound uranium was found to make up to 20% of the dissolved U concentration in the open ocean." ° Uranium may also be enriched in estuarine colloids and in suspended organic matter within the surface ocean. " Scott" and Maeda and Windom" have suggested the possibility that humic acids can efficiently scavenge uranium in low salinity regions of some estuaries. Finally, sedimentary organic matter can also efficiently complex or adsorb uranium and other radionuclides. [Pg.44]

If uranium is internally cycled in coastal environments or if the riverine delivery of U shows some variability, residence time estimates (regardless of their precision) cannot be sensitive indicators of oceanic uranium reactivity. Based on very precise measurements of dissolved uranium in the open ocean, Chen et alJ concluded that uranium may be somewhat more reactive in marine environments than previously inferred. Furthermore, recent studies in high-energy coastal environments " indicate that uranium may be actively cycled and repartitioned (non-conservative) from one phase to the next. [Pg.45]

U-SERIES ISOTOPES IN THE OCEAN ENVIRONMENT 2.1. The ocean uranium budget... [Pg.493]

Dunk RM, Jenkins WJ, Mills RA (2002) A re-evaluation of the oceanic uranium budget. Chem Geol 190 45-67... [Pg.525]

A schematic illustration demonstrating the relation between dissolved and its daughter °Th in the ocean. Uranium is dissolved in the water, but thorium is quantitatively adsorbed to particles and removed to the sediments. At secular equilibrium the integrated activity of excess °Th in the sediment should equal the depth-integrated activity of on the overlying water. [Pg.231]

Authigenic Deposits. Carbon Cycle. Cenozoic Climate - Oxygen Isotope Evidence. Cenozoic Oceans - Carbon Cycle Models. Cosmogenic Isotopes. Mid-Ocean Ridge Geochemistry and Petrology. Rare Earth Elements and their Isotopes in the Ocean. River Inputs. Stable Carbon Isotope Variations in the Ocean. Uranium-Thorium Series Isotopes in Ocean Profiles. [Pg.133]

Seawater. The world s oceans contain ca 4 X 10 t of uranium (32). Because the uranium concentration is very low, approximately 3.34 ppm, vast amounts of water would be required to recover significant amount of uranium metal, ie, 10 m of seawater for each metdc ton of U. Significant engineering development and associated environmental concerns have limited the development of an economic means of uranium extraction from seawater (32) (see Ocean RAWMATORiALs). [Pg.188]

Dissolved Minerals. The most significant source of minerals for sustainable recovery may be ocean waters which contain nearly all the known elements in some degree of solution. Production of dissolved minerals from seawater is limited to fresh water, magnesium, magnesium compounds (qv), salt, bromine, and heavy water, ie, deuterium oxide. Considerable development of techniques for recovery of copper, gold, and uranium by solution or bacterial methods has been carried out in several countries for appHcation onshore. These methods are expected to be fully transferable to the marine environment (5). The potential for extraction of dissolved materials from naturally enriched sources, such as hydrothermal vents, may be high. [Pg.288]

Owing to the stability of the uranyl carbonate complex, uranium is universally present in seawater at an average concentration of ca. 3.2/rgL with a daughter/parent activity ratio U) of 1.14. " In particulate matter and bottom sediments that are roughly 1 x 10 " years old, the ratio should approach unity (secular equilibrium). The principal source of dissolved uranium to the ocean is from physicochemical weathering on the continents and subsequent transport by rivers. Potentially significant oceanic U sinks include anoxic basins, organic rich sediments, phosphorites and oceanic basalts, metalliferous sediments, carbonate sediments, and saltwater marshes. " ... [Pg.43]

Global uranium flux calculations have typically been based on the following two assumptions (a) riverine-end member concentrations of dissolved uranium are relatively constant, and (b) no significant input or removal of uranium occurs in coastal environments. Other sources of uranium to the ocean may include mantle emanations, diffusion through pore waters of deep-sea sediments, leaching of river-borne sediments by seawater," and remobilization through reduction of a Fe-Mn carrier phase. However, there is still considerable debate... [Pg.44]

Hart, S.R. and Staudigel, H. (1982) The controls of alkalines and uranium in seawater by ocean crast alteration. Earth Planet. Sci. Lett., 58, 202-213. [Pg.427]

Fame G (1986) Principles of Isotope Geology, Second Edition. John Wiley and Sons, New York Fleischer RL, Raabe OG (1975) Recoiling alpha-emitting nuclei. Mechanisms for uranium-series disequilibrium. Geochim Cosmochim Acta 42 973-978 Goldstein SJ, Murrell MT, Williams RW (1993) Pa and h chronology of mid-ocean ridge basalts. Earth Planet Sci Lett 115 151-159... [Pg.20]

Cochran JK, Masque P (2003) Short-lived U/Th-series radionuclides in the ocean tracers for scavenging rates, export fluxes and particle dynamics. Rev Mineral Geochem 52 461-492 Cohen AS, O Nions RK (1991) Precise determination of femtogram quantities of radium by thermal ionization mass spectrometry. Anal Chem 63 2705-2708 Cohen AS, Belshaw NS, O Nions RK (1992) High precision uranium, thorium, and radium isotope ratio measurements by high dynamic range thermal ionization mass spectrometry. Inti J Mass Spectrom Ion Processes 116 71-81... [Pg.56]

Sturm ME, Goldstein SJ, Klein EM, Karson JA, Mnrrell MT (2000) Uranium-series age constraints on lavas from the axial valley of the Mid-Atlantic Ridge, MARK area. Earth Planet Sci Lett 181 61-70 Sun S, McDonongh WF (1989) Chemical and isotopic systematics of ocean basalts implications for mantle composition and processes. In Magmatism in the Ocean Basins. Saunders AD, Norry MJ (eds) Blackwell Scientific Pnbl. Oxford, p 313-345... [Pg.211]

Lundstrom CC, Shaw H, Ryerson F, Phinney D, Gill J, Williams Q (1994) Compositional controls on on the partitioning of U, Th, Ba, Pb, Sr and Zr between clinopyroxene and haplobasaltic melts implications for uranium series disequilibria in basalts. Earth Planet Sci Lett 128 407-423 Lnndstrom CC (2003) Uranium-series disequilibria in mid-ocean ridge basalts observations and models of basalt genesis. Rev Mineral Geochem 52 175-214... [Pg.307]

Russell AD, Emerson S, Mix AC, Peterson LC (1996) The use of foraminiferal U/Ca as an indicator of changes in seawater uranium content. Paleoceanography 11 649-663 Rutherford E, Soddy F (1902) The cause and nature of radioactivity Part 11. Phil Mag Ser 6 4 569-585 Sacked WM (1960) Protactnium-231 content of ocean water and sediments. Science 132 1761-1762 Sacked WM (1958) Ionium-uranium ratios in marine deposited calcium carbonates and related materials. [Pg.404]


See other pages where Ocean uranium is mentioned: [Pg.45]    [Pg.54]    [Pg.44]    [Pg.45]    [Pg.45]    [Pg.54]    [Pg.44]    [Pg.45]    [Pg.212]    [Pg.1]    [Pg.383]    [Pg.314]    [Pg.33]    [Pg.34]    [Pg.44]    [Pg.45]    [Pg.103]    [Pg.342]    [Pg.342]    [Pg.276]    [Pg.122]    [Pg.175]    [Pg.209]    [Pg.247]    [Pg.247]    [Pg.263]    [Pg.311]    [Pg.367]    [Pg.379]    [Pg.381]    [Pg.382]    [Pg.398]    [Pg.401]    [Pg.402]    [Pg.402]    [Pg.404]   
See also in sourсe #XX -- [ Pg.641 ]




SEARCH



© 2024 chempedia.info