Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic series

What are the causes behind the recurring gradation of this nucleophilicity series Nucleophilicity obviously measures the ability of the nucleophile to make an electron pair available to the electrophile (i.e., the alkylating agent or the epoxide). With this as the basic idea, the experimentally observable nucleophilicity gradations can be interpreted as follows. [Pg.45]

Within the series of electrophilic carbenes (group I in Table 17), with the only exception of MeCF, chemical substitution at the carbon site results in electrophilic activation (Aw > 0) for the whole series. For the ambiphilic and nucleophilic series on the other hand (groups II and III in Table 17) chemical substitution results in electrophilic deactivation (Aw < 0), without exceptions.139... [Pg.189]

This reactivity pattern underlies a group of important synthetic methods in which an a-substituent is displaced by a nucleophile by an elimination-addition mechanism. Even substituents which are normally poor leaving groups, such as alkoxy and dialkylamino, are readily displaced in the indole series. [Pg.4]

As in the pyridine series, acid catalysis facilitates this reaction because the 2-position of the ring is far more sensitive to the nucleophilic reagents when the nitrogen is quaternized (30). [Pg.13]

The same situation is observed in the series of alkyl-substituted derivatives. Electron-donating alkyl substituents induce an activating effect on the basicity and the nucleophilicity of the nitrogen lone pair that can be counterbalanced by a deactivating and decelerating effect resulting from the steric interaction of ortho substituents. This aspect of the reactivity of thiazole derivatives has been well investigated (198, 215, 446, 452-456) and is discussed in Chapter HI. [Pg.126]

There are very large differences m the rates at which the various kinds of alkyl halides— methyl primary secondary or tertiary—undergo nucleophilic substitution As Table 8 2 shows for the reaction of a series of alkyl bromides... [Pg.334]

Thus with dihalocarbenes we have the interesting case of a species that resem bles both a carbanion (unshared pair of electrons on carbon) and a carbocation (empty p orbital) Which structural feature controls its reactivity s Does its empty p orbital cause It to react as an electrophile s Does its unshared pair make it nucleophilic s By compar mg the rate of reaction of CBi2 toward a series of alkenes with that of typical electrophiles toward the same alkenes (Table 14 4) we see that the reactivity of CBi2... [Pg.607]

The first commercial PPS process by Phillips synthesized a low molecular weight linear PPS that had modest mechanical properties. It was usehil in coatings and as a feedstock for a variety of cured injection-molding resins. The Phillips process for preparing low molecular weight linear PPS consists of a series of nucleophilic displacement reactions that have differing reactivities (26). [Pg.442]

Nucleophilic substitution in the pyridazine 1-oxide series takes place either according to pathway (a) or pathway (b) (Scheme 31). Pathway (a) operates when position 6 is unsubstituted. [Pg.23]

Pyrazine and quinoxaline fV-oxides generally undergo similar reactions to their monoazine counterparts. In the case of pyridine fV-oxide the ring is activated both towards electrophilic and nucleophilic substitution reactions however, pyrazine fV-oxides are generally less susceptible to electrophilic attack and little work has been reported in this area. Nucleophilic activation generally appears to be more useful and a variety of nucleophilic substitution reactions have been exploited in the pyrazine, quinoxaline and phenazine series. [Pg.171]

In the pyrimido[4,5-c]quinoline series the 1-chloro derivative (104) reacts with a variety of nucleophiles (57JCS3718), as does a 2-chloro in (105) in the isomeric pyrimido[5,4-c]quinoline series (66MI21S00). [Pg.214]

Reactive halogens in various series have been removed by catalytic hydrogenation with either platinum or palladium catalysts, and other nucleophiles which have been used in chloride displacements include hydroxide ion, alkoxides, hydrosulflde, hydrazine and toluene-p-sulfonylhydrazine, and trimethyl phosphite. [Pg.214]

In forcing conditions with excess of reagents the 5,8-bis derivative was obtained in the above cases, with hydrazine and with sulfur nucleophiles. Other authors have also observed selective reactions in the pyrido[2,3-[Pg.242]

Alkylthio groups are replaced in nucleophilic substitutions. Such reactions are easy in cationic derivatives for example, in the 1,2-dithiolylium series (539), substituted cydopen-tadienyl ion gives fulvene derivatives (540) (66AHC(7)39). 2-Methylthio groups in... [Pg.103]

Nucleophilic replacement of hydrogen on an isoxazole is unknown and replacement of substituents is discussed in Section 4.16.3.3. In this series it is difficult to identify reactions involving addition to the ring as, in many instances, they are rapidly followed by elimination or ring cleavage sequences. [Pg.28]

For general reviews of nucleophilicity, see R. F. Hudson, in Chemical Reactivity and Reaction Paths, G. Klopman, ed., John Wiley Sons, New York, 1974, Chapter 5 J. M. Harris and S. P. McManus, eds., Nucleophilicity, Advances in Chemistry Series, fio. 215, American Chemical Society, lA asbingtuo, D.C., 1987. [Pg.290]

In fee absence of fee solvation typical of protic solvents, fee relative nucleophilicity of anions changes. Hard nucleophiles increase in reactivity more than do soft nucleophiles. As a result, fee relative reactivity order changes. In methanol, for example, fee relative reactivity order is N3 > 1 > CN > Br > CP, whereas in DMSO fee order becomes CN > N3 > CP > Br > P. In mefeanol, fee reactivity order is dominated by solvent effects, and fee more weakly solvated N3 and P ions are fee most reactive nucleophiles. The iodide ion is large and very polarizable. The anionic charge on fee azide ion is dispersed by delocalization. When fee effect of solvation is diminished in DMSO, other factors become more important. These include fee strength of fee bond being formed, which would account for fee reversed order of fee halides in fee two series. There is also evidence fiiat S( 2 transition states are better solvated in protic dipolar solvents than in protic solvents. [Pg.294]

The occurrence of nucleophilic participation is also indicated by a rate enhancement relative to the rate of solvolysis of n-butyl p-bromobenzenesulfonate. The solvolysis rates of a series of cu-mefhoxyall l p-bromobenzenesulfontes have been determined. A maximum rate is again observed where participation of a methoxy group via a live-membered ring is possible (see Table 5.20). [Pg.311]

The extent to which intramolecular nucleophilic catalysis of the type depicted in mechanism I is important is a function of the leaving ability of the alkoxy group. This has been demonstrated by the study of the hydrolysis of a series of monoesters of phthalic acid ... [Pg.491]

A method for generating a perfluoroarylmagnesium compound is the cleavage of a pentafluorophenyl-metal bond by a nucleophile such as ethyltnagnesium bromide As an example, tetrakis(pentafluorophenyl)tin on reaction with ethyl-magnesium bromide gives a series of products, one of which may result from pentafluorophenylmagnesium bromide [27] (equation 7)... [Pg.648]

Similarly, Itexafluoroprapylene undergoes fluoride ion induced homotelo-merization to give a series of dimers and trimers These telomerizations can be induced by other nucleophiles, such as amines Indeed, the selectivity of the pi oce-,s can be changed significantly by varying reagents and reaction conditions [25, 26] (equations 19 and 20)... [Pg.750]


See other pages where Nucleophilic series is mentioned: [Pg.210]    [Pg.221]    [Pg.151]    [Pg.210]    [Pg.221]    [Pg.151]    [Pg.203]    [Pg.42]    [Pg.40]    [Pg.91]    [Pg.334]    [Pg.336]    [Pg.1296]    [Pg.273]    [Pg.22]    [Pg.150]    [Pg.28]    [Pg.176]    [Pg.236]    [Pg.242]    [Pg.287]    [Pg.292]    [Pg.292]    [Pg.78]    [Pg.42]    [Pg.67]    [Pg.108]    [Pg.292]    [Pg.295]    [Pg.459]    [Pg.472]    [Pg.334]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



© 2024 chempedia.info