Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic aromatic radical pathway

The mechanism of the reactions of aryl halides cannot occur by the common S 2 patii for the oxidative addition of methyl halides, and most aryl halides lack substituents that would make them sufficiently electrophilic to react by nucleophilic aromatic substitution pathways. As presented in the section on radical pathways for oxidative addition, aryl halides react with metal complexes that readUy imdergo one-electron oxidation by radical mechanisms. However, metal complexes that do not readily undergo one-electron processes tend to react by two-electron mechanisms. Thus, aryl halides typically react with tP" palladium(O) complexes by concerted pathways through three-centered transition states. No strong data for a radical pathway has been gained during the many studies on the oxidative addition of aryl halides to Pd(0). In contrast, evidence that oxidative addition of aryl halides to P, iridium, Vaska-t)q)e complexes occurs by a radical pathway has been published. ... [Pg.310]

In the original process using tin amides, transmetallation formed the amido intermediate. However, this synthetic method is outdated and the transfer of amides from tin to palladium will not be discussed. In the tin-free processes, reaction of palladium aryl halide complexes with amine and base generates palladium amide intermediates. One pathway for generation of the amido complex from amine and base would be reaction of the metal complex with the small concentration of amide that is present in the reaction mixtures. This pathway seems unlikely considering the two directly observed alternative pathways discussed below and the absence of benzyne and radical nucleophilic aromatic substitution products that would be generated from the reaction of alkali amide with aryl halides. [Pg.244]

The reaction of a nucleophilic alkyl radical R with benzene affords the a-complex 1, a fairly stable cyclohexadienyl radical, which under oxidizing conditions leads to cation 2 (Scheme 1). Depending on the stability of the attacking radical, the formation of 1 is a reversible process. Deprotonation eventually affords the homolytic aromatic substitution product 3. If the reaction is performed under non-oxidizing conditions, cyclohexadienyl radical 1 can dimerize (—> 4), disproportionate to form cyclohexadiene 5 and the arene 3, or further react by other pathways [3]. [Pg.562]

Besides nucleophilic and electrophilic pathways for aromatic substitutions, there are also radical pathways. With aromatic rings that are easily reduced, this is a common mechanism, because the benzene ring can delocalize the radical anion. The radical chain mechanism is referred to as SrnI, (substitution, radical-nucleophilic, unimolecular). An example is shown in Eq. 10.118. [Pg.615]

There has been a major review of substitution by the radical-chain 5rn1 mechanism. It has been shown that reaction by the SrnI pathway of the enolate anions of 2- and 3-acetyl-l-methylpyrrole may yield a-substituted acetylpyrroles. The dichotomy of reactions of halonitrobenzenes with nucleophiles has been nicely summarized major pathways include reduction via radical pathways and. SnAt substitution of halogen. EPR spectroscopy has been used to detect radical species produced in the reactions of some aromatic nitro compounds with nucleophiles however, whether these species are on the substitution pathway is questionable. The reaction of some 4-substimted N,N-dimethylanilines with secondary anilines occurs on activation by thallium triacetate to yield diphenylamine derivatives radical cation intermediates are proposed. ... [Pg.283]

Primer and Rosenthal (25) have demonstrated that the reaction of O2 with nitro substituted aromatic halides occurs via an electron transfer from O2 to the substituted benzene to yield the anion radical which is subsequently scavenged by molecular oxygen (equation 26). They were able to distinguish this reaction pathway from direct addition of O2 to the aromatic ring as in normal nucleophilic aromatic substitution by utilizing... [Pg.253]

The SET mechanism is chiefly found where X = I or NO2 (see 10-104). A closely related mechanism, the SrnE takes place with aromatic substrates (Chapter 13). In that mechanism the initial attack is by an electron donor, rather than a nucleophile. The Srn 1 mechanism has also been invoked for reactions of enolate anions with 2-iodobicyclo[4.1.0]heptane. An example is the reaction of l-iodobicyclo[2.2.1]-heptane (15) with NaSnMe3 or LiPPh2, and some other nucleophiles, to give the substitution product. Another is the reaction of bromo 4-bromoacetophenone (16) with Bu4NBr in cumene. " The two mechanisms, Sn2 versus SET have been compared and contrasted. There are also reactions where it is reported that radical, carbanion, and carbene pathways occur simultaneously. ... [Pg.403]

Attack on aromatic species can occur with radicals, as well as with the electrophiles (p. 131) and nucleophiles (p. 167) that we have already considered as with these polar species, homolytic aromatic substitution proceeds by an addition/elimination pathway ... [Pg.331]

Since the latter conditions pertain to aromatic nitration solely via the homolytic annihilation of the cation radical in Scheme 16, it follows from the isomeric distributions in (81) that the electrophilic nitrations of the less reactive aromatic donors (toluene, mesitylene, anisole, etc.) also proceed via Scheme 19. If so, why do the electrophilic and charge-transfer pathways diverge when the less reactive aromatic donors are treated with other /V-nitropyridinium reagents, particularly those derived from the electron-rich MeOPy and MePy The conundrum is cleanly resolved in Fig. 17, which shows the rate of homolytic annihilation of aromatic cation radicals by NO, (k2) to be singularly insensitive to cation-radical stability, as evaluated by x. By contrast, the rate of nucleophilic annihilation of ArH+- by pyridine (k2) shows a distinctive downward trend decreasing monotonically from toluene cation radical to anthracene cation radical. Indeed, the... [Pg.260]

Photoinduced electron-transfer reactions generate the radical ion species from the electron-donating molecule to the electron-accepting molecules. The radical cations of aromatic compounds are favorably attacked by nucleophiles [Eq. (5)]. On the contrary, the radical anions of aromatic compounds react with electrophiles [Eq. (6)] or carbon radical species generated from the radical cations [Eq. (7)]. In some cases, the coupling reactions between the radical cations and the radical anions directly take place [Eq. (8)] or the proton transfer from the radical cation to the radical anion followed by the radical coupling occurs as a major pathway. In this section, we will mainly deal with the intermolecular and intramolecular photoaddition to the aromatic rings via photoinduced electron transfer. [Pg.207]

When steric hindrance in substrates is increased, and when the leaving anion group in substrates is iodide, SET reaction is much induced (Cl < Br < I). This reason comes from the fact that steric hindrance retards the direct nucleophilic reduction of substrates by a hydride species, and the a energy level of C-I bond in substrates is lower than that of C-Br or C-Cl bond. Therefore, metal hydride reduction of alkyl chlorides, bromides, and tosylates generally proceeds mainly via a polar pathway, i.e. SN2. Since LUMO energy level in aromatic halides is lower than that of aliphatic halides, SET reaction in aromatic halides is induced not only in aromatic iodides but also in aromatic bromides. Eq. 9.2 shows reductive cyclization of o-bromophenyl allyl ether (4) via an sp2 carbon-centered radical with LiAlH4. [Pg.216]


See other pages where Nucleophilic aromatic radical pathway is mentioned: [Pg.104]    [Pg.754]    [Pg.138]    [Pg.104]    [Pg.89]    [Pg.155]    [Pg.936]    [Pg.177]    [Pg.71]    [Pg.565]    [Pg.181]    [Pg.9]    [Pg.107]    [Pg.108]    [Pg.321]    [Pg.567]    [Pg.120]    [Pg.43]    [Pg.1]    [Pg.1]    [Pg.246]    [Pg.291]    [Pg.181]    [Pg.48]    [Pg.293]    [Pg.254]    [Pg.256]    [Pg.2]    [Pg.59]    [Pg.76]    [Pg.100]    [Pg.487]    [Pg.155]    [Pg.155]    [Pg.60]    [Pg.6]   
See also in sourсe #XX -- [ Pg.95 , Pg.96 , Pg.152 , Pg.232 ]




SEARCH



Aromatic nucleophiles

Nucleophilic aromatic

Nucleophilic pathway

Nucleophilic radicals

Radical pathway

© 2024 chempedia.info