Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleation transformation

Weinberg M.C., "Non-isothermal Surface Nucleation Transformation Kinetics," J. Non-Cryst. Solids, 151, 81-87 (1992b). [Pg.358]

A molten metal alloy would normally be expected to crystallize into one or several phases. To form an amorphous, ie, glassy metal alloy from the Hquid state means that the crystallization step must be avoided during solidification. This can be understood by considering a time—temperature—transformation (TTT) diagram (Eig. 2). Nucleating phases require an iacubation time to assemble atoms through a statistical process iato the correct crystal stmcture... [Pg.334]

In an amorphous material, the aUoy, when heated to a constant isothermal temperature and maintained there, shows a dsc trace as in Figure 10 (74). This trace is not a characteristic of microcrystalline growth, but rather can be well described by an isothermal nucleation and growth process based on the Johnson-Mehl-Avrami (JMA) transformation theory (75). The transformed volume fraction at time /can be written as... [Pg.339]

A number of theories have been put forth to explain the mechanism of polytype formation (30—36), such as the generation of steps by screw dislocations on single-crystal surfaces that could account for the large number of polytypes formed (30,35,36). The growth of crystals via the vapor phase is beheved to occur by surface nucleation and ledge movement by face specific reactions (37). The soHd-state transformation from one polytype to another is beheved to occur by a layer-displacement mechanism (38) caused by nucleation and expansion of stacking faults in close-packed double layers of Si and C. [Pg.464]

Figure 1.11 The formation of metal clusters during the nucleation of a new phase. The co-ordination is first tetrahedral, leading to 5-fold symmetry, until the 13-atom icosahedron is formed which transforms into the cubic icosahedron of the stable phase... Figure 1.11 The formation of metal clusters during the nucleation of a new phase. The co-ordination is first tetrahedral, leading to 5-fold symmetry, until the 13-atom icosahedron is formed which transforms into the cubic icosahedron of the stable phase...
In this chapter we have shown that diffusive transformations can only take place if nuclei of the new phase can form to begin with. Nuclei form because random atomic vibrations are continually making tiny crystals of the new phase and if the temperature is low enough these tiny crystals are thermodynamically stable and will grow. In homogeneous nucleation the nuclei form as spheres within the bulk of the material. In... [Pg.73]

In reality, below 550°C the driving force becomes so large that it cannot be contained and the iron transforms from f.c.c. to b.c.c. by the displaeive mechanism. Small lens-shaped grains of b.c.c. nucleate at f.c.c. grain boundaries and move across the... [Pg.80]

Fig. 8.7. The displacive f.c.c. —> b.c.c. transformation in iron. B.c.c. lenses nucleate at f.c.c. groin boundaries and grow almost instantaneously. The lenses stop growing when they hit the next grain boundary. Note that, when a new phase in any material is produced by o displacive transformation it is always referred to os "martensite". Displacive transformations ore often called "martensitic" transformations os o result. Fig. 8.7. The displacive f.c.c. —> b.c.c. transformation in iron. B.c.c. lenses nucleate at f.c.c. groin boundaries and grow almost instantaneously. The lenses stop growing when they hit the next grain boundary. Note that, when a new phase in any material is produced by o displacive transformation it is always referred to os "martensite". Displacive transformations ore often called "martensitic" transformations os o result.
Figures 11.2-11.6 show how the room temperature microstructure of carbon steels depends on the carbon content. The limiting case of pure iron (Fig. 11.2) is straightforward when yiron cools below 914°C a grains nucleate at y grain boundaries and the microstructure transforms to a. If we cool a steel of eutectoid composition (0.80 wt% C) below 723°C pearlite nodules nucleate at grain boundaries (Fig. 11.3) and the microstructure transforms to pearlite. If the steel contains less than 0.80% C (a hypoeutectoid steel) then the ystarts to transform as soon as the alloy enters the a+ yfield (Fig. 11.4). "Primary" a nucleates at y grain boundaries and grows as the steel is cooled from A3... Figures 11.2-11.6 show how the room temperature microstructure of carbon steels depends on the carbon content. The limiting case of pure iron (Fig. 11.2) is straightforward when yiron cools below 914°C a grains nucleate at y grain boundaries and the microstructure transforms to a. If we cool a steel of eutectoid composition (0.80 wt% C) below 723°C pearlite nodules nucleate at grain boundaries (Fig. 11.3) and the microstructure transforms to pearlite. If the steel contains less than 0.80% C (a hypoeutectoid steel) then the ystarts to transform as soon as the alloy enters the a+ yfield (Fig. 11.4). "Primary" a nucleates at y grain boundaries and grows as the steel is cooled from A3...
The secondary source of fine particles in the atmosphere is gas-to-particle conversion processes, considered to be the more important source of particles contributing to atmospheric haze. In gas-to-particle conversion, gaseous molecules become transformed to liquid or solid particles. This phase transformation can occur by three processes absortion, nucleation, and condensation. Absorption is the process by which a gas goes into solution in a liquid phase. Absorption of a specific gas is dependent on the solubility of the gas in a particular liquid, e.g., SO2 in liquid H2O droplets. Nucleation and condensation are terms associated with aerosol dynamics. [Pg.145]

Lipson (1943, 1944), who had examined a copper-nickeMron ternary alloy. A few years ago, on an occasion in honour of Mats Hillert, Cahn (1991) mapped out in masterly fashion the history of the spinodal concept and its establishment as a widespread alternative mechanism to classical nucleation in phase transformations, specially of the solid-solid variety. An excellent, up-to-date account of the present status of the theory of spinodal decomposition and its relation to experiment and to other branches of physics is by Binder (1991). The Hillert/Cahn/Hilliard theory has also proved particularly useful to modern polymer physicists concerned with structure control in polymer blends, since that theory was first applied to these materials in 1979 (see outline by Kyu 1993). [Pg.105]

We can anticipate that the highly defective lattice and heterogeneities within which the transformations are nucleated and grow will play a dominant role. We expect that nucleation will occur at localized defect sites. If the nucleation site density is high (which we expect) the bulk sample will transform rapidly. Furthermore, as Dremin and Breusov have pointed out [68D01], the relative material motion of lattice defects and nucleation sites provides an environment in which material is mechanically forced to the nucleus at high velocity. Such behavior was termed a roller model and is depicted in Fig. 2.14. In these catastrophic shock situations, the transformation kinetics and perhaps structure must be controlled by the defective solid considerations. In this case perhaps the best published succinct statement... [Pg.38]

Martensitic phase transformations are discussed for the last hundred years without loss of actuality. A concise definition of these structural phase transformations has been given by G.B. Olson stating that martensite is a diffusionless, lattice distortive, shear dominant transformation by nucleation and growth . In this work we present ab initio zero temperature calculations for two model systems, FeaNi and CuZn close in concentration to the martensitic region. Iron-nickel is a typical representative of the ferrous alloys with fee bet transition whereas the copper-zink alloy undergoes a transformation from the open to close packed structure. ... [Pg.213]

In fundamental terms, the transformation temperature affects both the driving force for the decomposition of austenite and the diffusion rate of carbon. In effect, therefore, the transformation temperature alters both the rate of nucleation and the rate of growth. This in turn manifests itself in... [Pg.1281]


See other pages where Nucleation transformation is mentioned: [Pg.57]    [Pg.57]    [Pg.289]    [Pg.290]    [Pg.325]    [Pg.338]    [Pg.24]    [Pg.238]    [Pg.342]    [Pg.185]    [Pg.186]    [Pg.313]    [Pg.74]    [Pg.83]    [Pg.125]    [Pg.211]    [Pg.99]    [Pg.101]    [Pg.101]    [Pg.104]    [Pg.115]    [Pg.40]    [Pg.176]    [Pg.95]    [Pg.322]    [Pg.330]    [Pg.407]    [Pg.435]    [Pg.974]    [Pg.1207]    [Pg.1211]    [Pg.1281]    [Pg.1283]    [Pg.1285]    [Pg.11]    [Pg.380]    [Pg.381]   
See also in sourсe #XX -- [ Pg.191 , Pg.192 ]




SEARCH



Martensitic transformations nucleation

Nucleation time-temperature-transformation

Phase transformations, nucleation

Phase transformations, nucleation rate

Shear transformations nucleation under stress

Transformation by Surface Nucleation and Growth

Transformations initiated heterogeneous nucleation

© 2024 chempedia.info