Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleation point defect

Dislocation theory as a portion of the subject of solid-state physics is somewhat beyond the scope of this book, but it is desirable to examine the subject briefly in terms of its implications in surface chemistry. Perhaps the most elementary type of defect is that of an extra or interstitial atom—Frenkel defect [110]—or a missing atom or vacancy—Schottky defect [111]. Such point defects play an important role in the treatment of diffusion and electrical conductivities in solids and the solubility of a salt in the host lattice of another or different valence type [112]. Point defects have a thermodynamic basis for their existence in terms of the energy and entropy of their formation, the situation is similar to the formation of isolated holes and erratic atoms on a surface. Dislocations, on the other hand, may be viewed as an organized concentration of point defects they are lattice defects and play an important role in the mechanism of the plastic deformation of solids. Lattice defects or dislocations are not thermodynamic in the sense of the point defects their formation is intimately connected with the mechanism of nucleation and crystal growth (see Section IX-4), and they constitute an important source of surface imperfection. [Pg.275]

Fig.1 Schematic representation of the different nucleation sites on the alumina film Mid nucleation at line defects, Mpd nucleation at point defects, Mrs nucleation at regular surface sites... Fig.1 Schematic representation of the different nucleation sites on the alumina film Mid nucleation at line defects, Mpd nucleation at point defects, Mrs nucleation at regular surface sites...
The nucleation behavior of transition metal particles is determined by the ratio between the thermal energy of the diffusing atoms and the interaction of the metal atoms at the various nucleation sites. To create very small particles or even single atoms, low temperatures and metal exposures have to be used. The metal was deposited as metal atoms impinging on the surface. The metal exposure is given as the thickness (in monolayer ML) of a hypothetical, uniform, close-packed metal layer. The interaction strength of the metals discussed here was found to rise in the series from Pd < Rh < Co ( Ir) < V [17,32]. Whereas Pd and Rh nucleate preferentially at line defects at 300 K and decorate the point defects at 90 K, point defects are the predominant nucleation center for Co and V at 300 K. At 60 K, Rh nucleates at surface sites between point defects [16,33]. [Pg.120]

The intensity of the dicarbonyl at 2116cm is considerably reduced as compared to the 90 K deposit, indicating that the amount of metal atoms trapped at point defects is reduced for growth at 60 K. The difference in the nucleation sites is also reflected by the lower thermal stability of the systems, which decompose between 80 and 150 K as compared to 200 to 250 K for the 90 K deposits. With isotope mixing experiments the peak at 2087 cm was assigned to a carbonyl with three or more CO ligands, while the peak at 1999 cm is associated to a monocarbonyl [32]. [Pg.123]

More generally, co is independent of the external gas pressure k is the Boltzmann constant (1.38 x 10 erg deg ) and T is the temperature in Kelvin. Furthermore, the equilibrium between co and a collapsed CS plane fault is maintained by exchange at dislocations bounding the CS planes. Clearly, this equilibrium cannot be maintained except by the nucleation of a dislocation loop and such a process requires a supersaturation of vacancies and CS planes eliminate supersaturation of anion vacancies (Gai 1981, Gai et al 1982). Thus we introduce the concept of supersaturation of oxygen point defects in the reacting catalytic oxides, which contributes to the driving force for the nucleation of CS planes. From thermodynamics. [Pg.96]

By a change of temperature or pressure, it is often possible to cross the phase limits of a homogeneous crystal. It supersaturates with respect to one or several of its components, and the supersaturated components eventually precipitate. This is an additive reaction. It occurs either externally at the surfaces, or in the crystal bulk by nucleation and growth. Reactions of this kind from initially homogeneous and supersaturated solid solutions will be discussed in Chapter 12 on phase transformations. Internal reactions in the sense of the present chapter occur after crystal A has been brought into contact with reactant B, and the product AB forms isothermally in the interior of A or B. Point defect fluxes are responsible for the matter transport during internal reactions, and local equilibrium is often established throughout. [Pg.209]

The influence of plastic deformation on the reaction kinetics is twofold. 1) Plastic deformation occurs mainly through the formation and motion of dislocations. Since dislocations provide one dimensional paths (pipes) of enhanced mobility, they may alter the transport coefficients of the structure elements, with respect to both magnitude and direction. 2) They may thereby decisively affect the nucleation rate of supersaturated components and thus determine the sites of precipitation. However, there is a further influence which plastic deformations have on the kinetics of reactions. If moving dislocations intersect each other, they release point defects into the bulk crystal. The resulting increase in point defect concentration changes the atomic mobility of the components. Let us remember that supersaturated point defects may be annihilated by the climb of edge dislocations (see Section 3.4). By and large, one expects that plasticity will noticeably affect the reactivity of solids. [Pg.331]

Let us -assert, however, that the input of mechanical energy into solids in the sense of tribochemistry always results in a change of their kinetic behavior. The change in point defect concentration, dislocation or crack density, and structure influences the transport coefficients and reactive properties (e.g., catalytic activity, nucleation rate, etc.). [Pg.352]

This is, however, not the whole of the matter. The superstructure ordering of point defects the collection of interstitial ions along certain fines or sheets, as in Magneli s model for the precursor of his shear structures the temperature-dependent adjustment of composition of a nonstoichiometric phase at the boundary of the bivariant range the nucleation of a new phase of different stoichiometry—these depend on accumulating vacancies or interstitials in some regions of the crystal lattice at the expense of others. [Pg.16]

Fig. 33. Cartoon outlining various stages of pit nucleation according to the point defect model. Reproduced from J. Electrochem, Sec. 139, 3434 (1992) by permission of the Electrochemical Society. Fig. 33. Cartoon outlining various stages of pit nucleation according to the point defect model. Reproduced from J. Electrochem, Sec. 139, 3434 (1992) by permission of the Electrochemical Society.
It seems therefore that little or no stability is to be expected for the point defect aggregates which provide the necessary shear-plane precursors in the homogeneous shear-plane formation mechanisms. These homogeneous nucleation mechanisms are therefore unlikely to operate, and we turn our attention now to a heterogeneous mechanism, in which point defects aggregate at pre-existing planar-defect sites. [Pg.119]


See other pages where Nucleation point defect is mentioned: [Pg.122]    [Pg.30]    [Pg.330]    [Pg.126]    [Pg.126]    [Pg.103]    [Pg.20]    [Pg.31]    [Pg.101]    [Pg.43]    [Pg.254]    [Pg.322]    [Pg.318]    [Pg.318]    [Pg.254]    [Pg.256]    [Pg.237]    [Pg.15]    [Pg.22]    [Pg.55]    [Pg.55]    [Pg.183]    [Pg.424]    [Pg.282]    [Pg.323]    [Pg.324]    [Pg.110]    [Pg.171]    [Pg.119]    [Pg.120]    [Pg.116]    [Pg.265]    [Pg.265]    [Pg.266]    [Pg.344]    [Pg.66]    [Pg.233]   


SEARCH



Crystal, defect, point nucleation,

Defect point

Nucleating point

Nucleation, defects

© 2024 chempedia.info