Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions nuclear decay

Neutron Activation Analysis Few samples of interest are naturally radioactive. For many elements, however, radioactivity may be induced by irradiating the sample with neutrons in a process called neutron activation analysis (NAA). The radioactive element formed by neutron activation decays to a stable isotope by emitting gamma rays and, if necessary, other nuclear particles. The rate of gamma-ray emission is proportional to the analyte s initial concentration in the sample. For example, when a sample containing nonradioactive 13AI is placed in a nuclear reactor and irradiated with neutrons, the following nuclear reaction results. [Pg.645]

Radiocarbon dating (43) has probably gained the widest general recognition (see Radioisotopes). Developed in the late 1940s, it depends on the formation of the radioactive isotope and its decay, with a half-life of 5730 yr. After forms in the upper stratosphere through nuclear reactions of... [Pg.418]

Neutron-rich lanthanide isotopes occur in the fission of uranium or plutonium and ate separated during the reprocessing of nuclear fuel wastes (see Nuclearreactors). Lanthanide isotopes can be produced by neutron bombardment, by radioactive decay of neighboring atoms, and by nuclear reactions in accelerators where the rate earths ate bombarded with charged particles. The rare-earth content of solid samples can be determined by neutron... [Pg.541]

Delayed Proton and Neutron Decays. By means of a variety of nuclear reactions, as weh as the spontaneous fission of synthetic nucHdes, large numbers of isotopes of some elements have been produced. For example, whereas the only stable isotope of Cs (Z = 55) is Cs (JV = 78), ah of the Cs isotopes from Cs where 77 = 59 and = 0.57 s, to Cs where N = 93 and = 0.13 s, have been observed. At the low mass end of this series, the last proton is only loosely bound, and at the high mass end, the last neutron is only loosely bound. [Pg.451]

Occurrence and Recovery. Rhenium is one of the least abundant of the naturally occurring elements. Various estimates of its abundance in Earth s cmst have been made. The most widely quoted figure is 0.027 atoms pet 10 atoms of silicon (0.05 ppm by wt) (3). However, this number, based on analyses for the most common rocks, ie, granites and basalts, has a high uncertainty. The abundance of rhenium in stony meteorites has been found to be approximately the same value. An average abundance in siderites is 0.5 ppm. In lunar materials, Re, when compared to Re, appears to be enriched by 1.4% to as much as 29%, relative to the terrestrial abundance. This may result from a nuclear reaction sequence beginning with neutron capture by tungsten-186, followed by p-decay of of a half-hfe of 24 h (4) (see Extraterrestrial materials). [Pg.160]

Production-Scale Processing. The tritium produced by neutron irradiation of Li must be recovered and purified after target elements are discharged from nuclear reactors. The targets contain tritium and He as direct products of the nuclear reaction, a small amount of He from decay of the tritium and a small amount of other hydrogen isotopes present as surface or metal contaminants. [Pg.15]

Its terrestrial abundance has been estimated as 2x10" ppm, which corresponds to a total of only 15g in the top 1km of the earth s crust. Other isotopes have since been produced by nuclear reactions but all have shorter half-lives than Fr, which decays by energetic emission, t j2 21.8 min. Because of this intense radioactivity it is only possible to work with tracer amounts of the element. [Pg.69]

Uranium-235 and U-238 behave differently in the presence of a controlled nuclear reaction. Uranium-235 is naturally fissile. A fissile element is one that splits when bombarded by a neutron during a controlled process of nuclear fission (like that which occurs in a nuclear reactor). Uranium-235 is the only naturally fissile isotope of uranium. Uranium-238 is fertile. A fertile element is one that is not itself fissile, but one that can produce a fissile element. When a U-238 atom is struck by a neutron, it likely will absorb the neutron to form U-239. Through spontaneous radioactive decay, the U-239 will turn into plutonium (Pu-239). This new isotope of plutonium is fissile, and if struck by a neutron, will likely split. [Pg.868]

Plutonium (symbol Pu atomic number 93) is not a naturally occurring element. Plutonium is formed in a nuclear reaction from a fertile U-238 atom. Since U-238 is not fissile, it has a tendency to absorb a neutron in a reactor, rather than split apart into smaller fragments. By absorbing the extra neutron, U-238 becomes U-239. Uranium-239 is not very stable, and undergoes spontaneous radioactive decay to produce Pu-239. [Pg.869]

Plutonium-240 (Pu-240) is a byproduct of the nuclear reaction that takes place in a reactor. It takes one thousand years for 10.0% of a 4.60-g sample to decay. [Pg.295]

The discoveries of Becquerel, Curie, and Rutherford and Rutherford s later development of the nuclear model of the atom (Section B) showed that radioactivity is produced by nuclear decay, the partial breakup of a nucleus. The change in the composition of a nucleus is called a nuclear reaction. Recall from Section B that nuclei are composed of protons and neutrons that are collectively called nucleons a specific nucleus with a given atomic number and mass number is called a nuclide. Thus, H, 2H, and lhO are three different nuclides the first two being isotopes of the same element. Nuclei that change their structure spontaneously and emit radiation are called radioactive. Often the result is a different nuclide. [Pg.820]

STRATEGY Write the nuclear equation for each reaction, representing the daughter nuclide as E, with atomic number Z and mass number A. Then find Z and A from the requirement that both mass number and atomic number are conserved in a nuclear reaction, (a) In a decay, two protons and two neutrons are lost. As a result, the mass number decreases by 4 and the atomic number decreases by 2 (see Fig. 17.7). (b) The loss of one negative charge when an electron is ejected from the nucleus (Fig. 17.8) can be interpreted as the conversion of a neutron into a proton within the nucleus ... [Pg.821]

Like Halpem, Siekierska and Siuda with GeCl in benzene, Riedel and Merz found essentially the same distribution of radioactivity following p decay of Ge04 as by nuclear reactions, except for a uniformly higher yield of As 03. They analyse their results for this reaction as 14% failure of bond rupture, 5% radical recombination and, in benzene solution, 4% additional reaction with radiation produced radicals. [Pg.72]

The use of p decay for investigation of the chemical processes following nuclear reactions has two distinct advantages over the use of other nuclear reactions ... [Pg.82]

When an excited state is converted by ejection of an atomic electron, a high positive charge can be produced through subsequent Auger electron emission. Within the period of molecular vibration this charge is spread throughout the molecule to all atoms, and a Coulomb explosion results. This primary phenomenon occurs, of course, not only as a result of [ decay, but must be taken into account in all cases of nuclear reaction when deexcitation by inner electron conversion occurs... [Pg.93]

To summarize, the equation for a nuclear reaction is balanced when the total charge and total mass number of the products equals the total charge and total mass number of the reactants. This conservation requirement is one reason why the symbol for any nuclide includes its charge number (Z) as a subscript and its mass number as a superscript. These features provide a convenient way to keep track of charge and mass balances. Notice that in the equation for neutron decay, the sum of the subscripts for reactants equals the sum of the subscripts for products. Likewise, the sum of the superscripts for reactants equals the sum of the superscripts for products. We demonstrate how to balance equations for other reactions as they are introduced. [Pg.1564]

Radon-222 is an unstable nuclide that has been detected in the air of some homes. Its presence is a concern because of high health hazards associated with exposure to its radioactivity. Gaseous radon easily enters the lungs, and once it decays, the products are solids that remain embedded in lung tissue. Radon-222 transmutes to a stable nuclide by emitting a and P particles. The first four steps are a, a, P, p. Write this sequence of nuclear reactions and identify each product. [Pg.1568]

The sources used in Ni Mossbauer work mainly contain Co as the parent nuclide of Ni in a few cases, Cu sources have also been used. Although the half-life of Co is relatively short (99 m), this nuclide is much superior to Cu because it decays via P emission directly to the 67.4 keV Mossbauer level (Fig. 7.2) whereas Cu ti/2 = 3.32 h) decays in a complex way with only about 2.4% populating the 67.4 keV level. There are a number of nuclear reactions leading to Co [4] the most popular ones are Ni(y, p) Co with the bremsstrahlung (about 100 MeV) from an electron accelerator, or Ni(p, a) Co via proton irradiation of Ni in a cyclotron. [Pg.237]

X 109 years and decays by positron (+°P) emission. Write the equation for this nuclear reaction. [Pg.193]

Nuclide—A species of atom characterized by the constitution of its nucleus. The nuclear constitution is specified by the number of protons (Z), number of neutrons (N), and energy content or, alternatively, by the atomic number (Z), mass number A (N+Z), and atomic mass. To be regarded as a distinct nuclide, the atom must be capable of existing for a measurable time. Thus, nuclear isomers are separate nuclides, whereas promptly decaying excited nuclear states and unstable intermediates in nuclear reactions are not so considered. [Pg.280]

In terms of atomic spectrometry, NAA is a method combining excitation by nuclear reaction with delayed de-excitation of the radioactive atoms produced by emission of ionising radiation (fi, y, X-ray). Measurement of delayed particles or radiations from the decay of a radioactive product of a neutron-induced nuclear reaction is known as simple or delayed-gamma NAA, and may be purely instrumental (INAA). The y-ray energies are characteristic of specific indicator radionuclides, and their intensities are proportional to the amounts of the various target nuclides in the sample. NAA can thus... [Pg.663]

Charged particle activation analysis (CPAA) is based on charged particle induced nuclear reactions producing radionuclides that are identified and quantified by their characteristic decay radiation. CPAA allows trace element determination in the bulk of a solid sample as well characterization of a thin surface layer. [Pg.70]

In CPAA, the incident charged particle induces nuclear reactions which produce radionuclides, and the characteristic decay radiation of the latter is measured. Qualitative analysis of the radionuclide is achieved by measuring its energy and/or... [Pg.121]

What is the difference between radioactive decay processes and other types of nuclear reactions ... [Pg.347]

Ans. Other types of reactions require a small particle to react with a nucleus to produce a nuclear reaction radioactive decay processes are spontaneous with only the one nucleus as reactant. [Pg.347]


See other pages where Reactions nuclear decay is mentioned: [Pg.22]    [Pg.213]    [Pg.227]    [Pg.155]    [Pg.320]    [Pg.170]    [Pg.525]    [Pg.531]    [Pg.531]    [Pg.443]    [Pg.821]    [Pg.959]    [Pg.71]    [Pg.109]    [Pg.189]    [Pg.1564]    [Pg.1573]    [Pg.1613]    [Pg.7]    [Pg.662]    [Pg.662]    [Pg.665]    [Pg.123]    [Pg.493]    [Pg.526]   


SEARCH



Decay nuclear

Decay reactions

Nuclear reactions

Nuclear reactions alpha decay

Nuclear reactions and decay series

Nuclear reactions beta decay

Nuclear reactions decay rates

Nuclear reactions decay series

Nuclear reactions radioactive decay

Radioactive Decay and Nuclear Reactions

© 2024 chempedia.info