Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear motion spectroscopy spectroscopies

Although a separation of electronic and nuclear motion provides an important simplification and appealing qualitative model for chemistry, the electronic Sclirodinger equation is still fomiidable. Efforts to solve it approximately and apply these solutions to the study of spectroscopy, stmcture and chemical reactions fonn the subject of what is usually called electronic structure theory or quantum chemistry. The starting point for most calculations and the foundation of molecular orbital theory is the independent-particle approximation. [Pg.31]

Vos M H, Rappaport F, Lambry J-C, Breton J and Martin J-L 1993 Visualization of the coherent nuclear motion in a membrane protein by femtosecond spectroscopy Nature 363 320-5... [Pg.1998]

No molecule is completely rigid and fixed. Molecules vibrate, parts of a molecule may rotate internally, weak bonds break and re-fonn. Nuclear magnetic resonance spectroscopy (NMR) is particularly well suited to observe an important class of these motions and rearrangements. An example is tire restricted rotation about bonds, which can cause dramatic effects in the NMR spectrum (figure B2.4.1). [Pg.2089]

The adiabatic picture developed above, based on the BO approximation, is basic to our understanding of much of chemistry and molecular physics. For example, in spectroscopy the adiabatic picture is one of well-defined spectral bands, one for each electronic state. The smicture of each band is then due to the shape of the molecule and the nuclear motions allowed by the potential surface. This is in general what is seen in absorption and photoelectron spectroscopy. There are, however, occasions when the picture breaks down, and non-adiabatic effects must be included to give a faithful description of a molecular system [160-163]. [Pg.276]

Infrared, Raman, microwave, and double resonance techniques turn out to offer nicely complementary tools, which usually can and have to be complemented by quantum chemical calculations. In both experiment and theory, progress over the last 10 years has been enormous. The relationship between theory and experiment is symbiotic, as the elementary systems represent benchmarks for rigorous quantum treatments of clear-cut observables. Even the simplest cases such as methanol dimer still present challenges, which can only be met by high-level electron correlation and nuclear motion approaches in many dimensions. On the experimental side, infrared spectroscopy is most powerful for the O—H stretching dynamics, whereas double resonance techniques offer selectivity and Raman scattering profits from other selection rules. A few challenges for accurate theoretical treatments in this field are listed in Table I. [Pg.41]

A reevaluation of molecular structure of humic substances based on data obtained primarily from nuclear magnetic resonance spectroscopy, X-ray absorption near-edge structure spectroscopy, electrospray ionization-mass spectrometry, and pyrolysis studies was presented by Sutton and Sposito (2005). The authors consider that humic substances are collections of diverse, relatively low molecular mass components forming dynamic associations stabilized by hydrophobic interactions and hydrogen bonds. These associations are capable of organizing into micellar structures in suitable aqueous environments. Humic components display contrasting molecular motional behavior and may be spatially segregated on a scale of nanometers. Within this new structural context, these components comprise any molecules... [Pg.16]

Nuclear magnetic resonance spectroscopy of dilute polymer solutions is utilized routinely for analysis of tacticlty, of copolymer sequence distribution, and of polymerization mechanisms. The dynamics of polymer motion in dilute solution has been investigated also by protoni - and by carbon-13 NMR spectroscopy. To a lesser extent the solvent dynamics in the presence of polymer has been studied.Little systematic work has been carried out on the dynamics of both solvent and polymer in the same systan. [Pg.143]

Coherent nuclear motion of reacting excited-state molecules in solution observed by ultrafast two color pump-probe spectroscopy... [Pg.295]

Unlike the case of simple diatomic molecules, the reaction coordinate in polyatomic molecules does not simply correspond to the change of a particular chemical bond. Therefore, it is not yet clear for polyatomic molecules how the observed wavepacket motion is related to the reaction coordinate. Study of such a coherent vibration in ultrafast reacting system is expected to give us a clue to reveal its significance in chemical reactions. In this study, we employed two-color pump-probe spectroscopy with ultrashort pulses in the 10-fs regime, and investigated the coherent nuclear motion of solution-phase molecules that undergo photodissociation and intramolecular proton transfer in the excited state. [Pg.295]

Nuclear magnetic resonance spectroscopy NMR Molecular structure and motion... [Pg.209]

Vos, M. H., Rappaport, E., Lambry, J. C., Breton, J., and Martin, J. L., 1993, Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature,... [Pg.675]

Landers, A. G., Brill, T. B. and Marino, R. A. (1981). Electronic effects and molecular motion in /3-octahydro-l,3,5,7-teranitro-l,3,5,7-tetrazocine based on N nuclear quadrupole resonance spectroscopy. J. Phys. Chem., 85, 2618-23. [281]... [Pg.360]

Examination of protein structure in solution by nuclear magnetic resonance spectroscopy has revealed that a significant amount of internal motion exists in a protein on a timescale of 1 to 10 ns. Such internal motion could transmit kinetic energy from a distant part of the protein to the active site to assist in catalysis. It has been proposed that dynamic fluctations in the protein structure are used by enzymes to organize the enzyme-substrate complex into a reactive conformation. [Pg.434]


See other pages where Nuclear motion spectroscopy spectroscopies is mentioned: [Pg.1119]    [Pg.73]    [Pg.216]    [Pg.243]    [Pg.266]    [Pg.59]    [Pg.12]    [Pg.202]    [Pg.67]    [Pg.514]    [Pg.73]    [Pg.278]    [Pg.358]    [Pg.331]    [Pg.331]    [Pg.333]    [Pg.335]    [Pg.337]    [Pg.339]    [Pg.341]    [Pg.343]    [Pg.295]    [Pg.147]    [Pg.153]    [Pg.508]    [Pg.83]    [Pg.356]    [Pg.301]    [Pg.44]    [Pg.325]    [Pg.2134]    [Pg.2725]    [Pg.6246]    [Pg.65]   
See also in sourсe #XX -- [ Pg.331 , Pg.332 , Pg.333 , Pg.334 , Pg.335 , Pg.336 , Pg.337 , Pg.338 , Pg.339 , Pg.340 , Pg.341 , Pg.342 , Pg.343 ]




SEARCH



Nuclear motion

Nuclear motion spectroscopy

Nuclear motion spectroscopy

Spectroscopy of Nuclear Motion

© 2024 chempedia.info