Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonlinear infrared spectroscopy, peptide

Hamm P, Urn M and Hochstrasser R M 1998 Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy J. Phys. Chem. B 102 6123-38... [Pg.1993]

Multidimentional nonlinear infrared spectroscopy is used for identification of dynamic structures in liquids and conformational dynamics of molecules, peptides and, in principle, small proteins in solution (Asplund et al., 2000 and references herein). This spectroscopy incorporates the ability to control the responses of particular vibrational transitions depending on their couplings to one another. Two and three-pulse IR photon echo techniques were used to eliminate the inhomogeneous broadening in the IR spectrum. In the third-order IR echo methods, three phase-locked IR pulses with wave vectors kb k2, and k3 are focused on the sample at time intervals. The IR photon echo eventually emitted and the complex 2D IR spectrum is obtained with the use of Fourier transformation. The method was applied to the examination of vibrational properties of N-methyl acetamid and a dipeptide, acyl-proline-NH2.in D20. The 2D IR spectrum showed peaks at 1,610 and 1, 670 cm 1, the two frequencies ofthe acyl-proline dipeptide. Geometry and time-ordering of the incoming pulse sequence in fifth-order 2D spectroscopy is shown in Fig. 1.3. [Pg.5]

We shall conclude this chapter with a few speculative remarks on possible future developments of nonlinear IR spectroscopy on peptides and proteins. Up to now, we have demonstrated a detailed relationship between the known structure of a few model peptides and the excitonic system of coupled amide I vibrations and have proven the correctness of the excitonic coupling model (at least in principle). We have demonstrated two realizations of 2D-IR spectroscopy a frequency domain (incoherent) technique (Section IV.C) and a form of semi-impulsive method (Section IV.E), which from the experimental viewpoint is extremely simple. Other 2D methods, proposed recently by Mukamel and coworkers (47), would not pose any additional experimental difficulty. In the case of NMR, time domain Fourier transform (FT) methods have proven to be more sensitive by far as a result of the multiplex advantage, which compensates for the small population differences of spin transitions at room temperature. It was recently demonstrated that FT methods are just as advantageous in the infrared regime, although one has to measure electric fields rather than intensities, which cannot be done directly by an electric field detector but requires heterodyned echoes or spectral interferometry (146). Future work will have to explore which experimental technique is most powerful and reliable. [Pg.348]


See other pages where Nonlinear infrared spectroscopy, peptide is mentioned: [Pg.331]    [Pg.4]   


SEARCH



Infrared spectroscopy peptides

Nonlinear spectroscopy

© 2024 chempedia.info