Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Non-collinear optical parametric amplifier

The laser system consisted of a home-built Ti sapphire fs laser oscillator and regenerative amplifier (RGA). The pulse duration was 50 fs at 800 nm and 1 kHz repetition rate. The output of the RGA was split into two parts. One part was used as pump pulse. The other part served as a source for the generation of probe pulses with the help of a non-collinear optical parametric amplifier (NOPA, Clark). The sample preparation was explained elsewhere [7]. Briefly, sodium (Alfa Aesar) was used as received and sodium bromide (Alfa Aesar) was dried and re-crystallized under vacuum. The preparation of the samples was carried out in a glovebox under argon atmosphere. Localized electrons were generated by heating the metal-salt mixture to 800 °C, i.e. well above the melting point of the salt. [Pg.250]

The experimental configuration of the pump-probe experiment is similar to Ref. [5]. A home built non-collinear optical parametric amplifier (nc-OPA) was used as a pump, providing Fourier-transform-limited 30 fs pulses, which could be spectrally tuned between 480-560 nm. In all experiments white-light generated in a sapphire crystal using part of the fundamental laser (800 nm), was used as probe light. In the pump-probe experiments the pump was tuned to the S2 0-0 band for carotenoids with n>l 1. In the case of M9, it was not possible to tune the nc-OPA to its 0-0 transition, and hence another nc-OPA tuned to 900 nm was frequency doubled and used for excitation. In addition to conventional transient absorption pump-probe measurements, we introduce pump-deplete-probe spectroscopy, which is sensitive to the function of an absorbing state within the deactivation network. In this technique, we... [Pg.454]

The second volume of Laser Spectroscopy covers the different experimental techniques, necessary for the sensitive detection of small concentrations of atoms or molecules, for Doppler-free spectroscopy, laser-Raman-spectroscopy, doubleresonance techniques, multi-photon spectroscopy, coherent spectroscopy and time-resolved spectroscopy. In these fields the progress of the development of new techniques and improved experimental equipment is remarkable. Many new ideas have enabled spectroscopists to tackle problems which could not be solved before. Examples are the direct measurements of absolute frequencies and phases of optical waves with frequency combs, or time resolution within the attosecond range based on higher harmonics of visible femtosecond lasers. The development of femtosecond non-collinear optical parametric amplifiers (NOPA) has considerably improved time-resolved measurements of fast dynamical processes in excited molecules and has been essential for detailed investigations of important processes, such as the visual process in the retina of the eye or the photosynthesis in chlorophyl molecules. [Pg.762]

These limitations have recently been eliminated using solid-state sources of femtosecond pulses. Most of the femtosecond dye laser teclmology that was in wide use in the late 1980s [11] has been rendered obsolete by tliree teclmical developments the self-mode-locked Ti-sapphire oscillator [23, 24, 25, 26 and 27], the chirped-pulse, solid-state amplifier (CPA) [28, 29, 30 and 31], and the non-collinearly pumped optical parametric amplifier (OPA) [32, 33 and 34]- Moreover, although a number of investigators still construct home-built systems with narrowly chosen capabilities, it is now possible to obtain versatile, nearly state-of-the-art apparatus of the type described below Ifom commercial sources. Just as home-built NMR spectrometers capable of multidimensional or solid-state spectroscopies were still being home built in the late 1970s and now are almost exclusively based on commercially prepared apparatus, it is reasonable to expect that ultrafast spectroscopy in the next decade will be conducted almost exclusively with apparatus ifom conmiercial sources based around entirely solid-state systems. [Pg.1969]


See other pages where Non-collinear optical parametric amplifier is mentioned: [Pg.320]    [Pg.522]    [Pg.320]    [Pg.522]    [Pg.184]    [Pg.320]    [Pg.522]    [Pg.320]    [Pg.522]    [Pg.184]    [Pg.19]   
See also in sourсe #XX -- [ Pg.168 ]




SEARCH



Amplifiers

Collinear

Non-collinear optical parametric

Non-collinearity

Optical amplifiers

Parametric

Parametrization

© 2024 chempedia.info