Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Non chiral catalysts

Stereochemical control of a reaction can also be achieved using non-chiral catalysts, when a chiral centre already exists in the reactant, as for example in the reaction of cyano- or methoxycarbonylmethyl phosphonates with 3-hydroxy-2-(S)-alkylated products are obtained with ca. 40% de of the 2(S)-3(R)-diastereoisomers [11]. Similarly, when ethyl glycine is Ar-protected with (S)-menthone, C-alkylation under soliddiquid conditions using a non-chiral catalyst (6.4.5) provides a route to chiral a-substituted amino acids with optimum enantiomeric excesses of up to 47% [12],... [Pg.517]

Asymmetric induction using catalytic amounts of quininium or A-methyl-ephedrinium salts for the Darzen s reaction of aldehydes and ketones with phenacyl halides and chloromethylsulphones produces oxiranes of low optical purity [3, 24, 25]. The chiral catalyst appears to have little more effect than non-chiral catalysts (Section 12.1). Similarly, the catalysed reaction of sodium cyanide with a-bromo-ketones produces epoxynitriles of only low optical purity [3]. The claimed 67% ee for the phenyloxirane derived from the reaction of benzaldehyde with trimethylsul-phonium iodide under basic conditions [26] in the presence of A,A-dimethyle-phedrinium chloride was later retracted [27] the product was contaminated with the 2-methyl-3-phenyloxirane from the degradation of the catalyst. [Pg.539]

Another example worth mentioning is catalytic enantioselective hydrogenation of ketones. This reaction over non-chiral catalysts when a ketone contains a prochiral center produces racemic mixtures of optical isomers. The kinetics of 1 -phenyl-1,2-propanedione hydrogenation was studied in the presence of a chiral modifier -natural alkaloid cinchonidine (Figure 7.7)... [Pg.258]

An enantioselective aldol reaction may also be achieved with non-chiral starting materials by employing an asymmetric Lewis acid as catalyst ... [Pg.8]

Abstract The immobilization of chiral catalysts through non-covalent methods, as opposed to covalent immobilization, allows an easier preparation of chiral heterogeneous catalysts with, in principle, less influence of the support on the conformational preferences of the catalytic complex. In this review the different possibilities for immobilization without forming a covalent bond between the chiral diazahgand and the support, which can be either solid or liquid, are presented. [Pg.149]

Electrochemical studies, in combination with EPR measurements, of the analogous non-chiral occluded (salen)Mn complex in Y zeoUte showed that only a small proportion of the complex, i.e., that located on the outer part of the support, is accessible and takes part in the catalytic process [26]. Only this proportion (about 20%) is finally oxidized to Mn and hence the amount of catalyst is much lower than expected. This phenomenon explains the low catalytic activity of this system. We have considered other attempts at this approach using zeolites with larger pore sizes as examples of cationic exchange and these have been included in Sect. 3.2.3. [Pg.162]

Using this technique, Brandts et al. (24-26) have successfully anchored two homogeneous catalysts, that is [(AyR)-(Me-DuPHOS)Rh(COD)]BF4 and the non-chiral [Rh(DiPFc)(COD)BF4],... [Pg.120]

Brunner et al. attached chiral branches to non-chiral catalytically active sites. With the aim to influence the enantioselectivity of transition metal catalyzed reactions they synthesized several dendritically enlarged diphosphines such as 81 [101] (Fig. 29). In situ prepared catalysts from [Rh(cod)Cl]2and81 have been tested in the hydrogenation of (a)-N-acetamidocinnamic acid. After 20 hours at 20 bar H2-pressure (Rh/substrate ratio 1 50) the desired product was obtained with an enantiomer ratio of 51 49. [Pg.166]

Fig. 31. Selectivity comparison for the enantioselective addition of Et2Zn to benzaldehyde using different dendritic and non-dendritic homogeneous and heterogeneous Ti-TADDOLates as chiral catalysts [107,110], (S)-.(R) ratios refer to the 1-phenyl-propanol formed... Fig. 31. Selectivity comparison for the enantioselective addition of Et2Zn to benzaldehyde using different dendritic and non-dendritic homogeneous and heterogeneous Ti-TADDOLates as chiral catalysts [107,110], (S)-.(R) ratios refer to the 1-phenyl-propanol formed...
Rhodium complexes based on the chiral ligand (120) have been used in the asymmetric hydrogenation of functionalized chelating olefins in methanol and water. The results are compared to those obtained using the corresponding non-sulfonated catalysts in water all sulfonated... [Pg.113]

Chemical catalysts for transfer hydrogenation have been known for many decades [2e]. The most commonly used are heterogeneous catalysts such as Pd/C, or Raney Ni, which are able to mediate for example the reduction of alkenes by dehydrogenation of an alkane present in high concentration. Cyclohexene, cyclo-hexadiene and dihydronaphthalene are commonly used as hydrogen donors since the byproducts are aromatic and therefore more difficult to reduce. The heterogeneous reaction is useful for simple non-chiral reductions, but attempts at the enantioselective reaction have failed because the mechanism seems to occur via a radical (two-proton and two-electron) mechanism that makes it unsuitable for enantioselective reactions [2 c]. [Pg.1216]

Asymmetric catalysis is a vital and rapidly growing branch of modern organic chemistry. Within this context, Ti- and Zr-based chiral catalysts have played a pivotal role in the emergence of a myriad of efficient and enantioselective protocols for asymmetric synthesis. In this chapter, a critical overview of enantioselective reactions promoted by chiral Zr-based catalysts is provided. Since an account of this type is most valuable when it provides a context for advances made in a particular area of research, when appropriate, a brief discussion of related catalytic asymmetric reactions promoted by non-Zr-based catalysts is presented as well. [Pg.180]

The studies summarized above clearly bear testimony to the significance of Zr-based chiral catalysts in the important field of catalytic asymmetric synthesis. Chiral zircono-cenes promote unique reactions such as enantioselective alkene alkylations, processes that are not effectively catalyzed by any other chiral catalyst class. More recently, since about 1996, an impressive body of work has appeared that involves non-metallocene Zr catalysts. These chiral complexes are readily prepared (often in situ), easily modified, and effect a wide range of enantioselective C—C bond-forming reactions in an efficient manner (e. g. imine alkylations, Mannich reactions, aldol additions). [Pg.223]

If the above research is an indication, the catalytic enantioselective variants of many of these exciting transformations will soon be disclosed in our leading journals. Another challenge in this area remains the difficulty encountered in preparing chiral zirconocene catalysts, particularly since many of the reactions promoted by this group of chiral catalysts cannot be effected by the non-metallocene variants. Thus, the development of more practical, but equally or even more selective and efficient variations of existing methods should not be viewed as any less significant. [Pg.223]

Thus the highest stereoselectivity is likely to be obtained with short reaction times low temperatures high concentrations of the chiral catalyst non-polar solvents [25]. [Pg.522]

Air or dioxygen can be used as an oxidant with non-chiral DABCO to give a low cost catalyst for dihydroxylation of alkenes into racemic mixtures dihydroquinidine modified catalysts with the air variant give lower e.e. s than the AD-mix catalysts [26],... [Pg.313]

As an example of non-enzymatic catalyst using oxazaborolidines [10], Corey and his associates have described an efficient synthesis of (-i-)-l(S),5(R),8(S)-8-phenyl-2-azabicyclo[3.3.0]octan-8-ol (2.) and its enantiomer. The B-methyloxazaborolidine derivatives (3) of these amino alcohols are excellent catalysts -or chemzymes- for the enantioselective reduction of a variety of achiral ketones to chiral secondary alcohols [11]. [Pg.295]

If chiral catalysts are used to generate the intermediate oxonium ylides, non-racemic C-O bond insertion products can be obtained [1265,1266]. Reactions of electrophilic carbene complexes with ethers can also lead to the formation of radical-derived products [1135,1259], an observation consistent with a homolysis-recombination mechanism for 1,2-alkyl shifts. Carbene C-H insertion and hydride abstraction can efficiently compete with oxonium ylide formation. Unlike free car-benes [1267,1268] acceptor-substituted carbene complexes react intermolecularly with aliphatic ethers, mainly yielding products resulting from C-H insertion into the oxygen-bound methylene groups [1071,1093]. [Pg.205]

Very reeently Kureshy et al. [98] further reported non-salen chiral Schiff base derived Ti complexes as eatalysts 70, 71 (Figure 23) in the KR of meso-siiXheae oxide, cyclohexene oxide, cyelooetene oxide and cA-butene oxide with anilines. The study deliberated upon the role of several ehiral and achiral additives with these catalysts to give chiral y9-amino alcohols with high enantioselectivity ee, >99%) in excellent yield (>99%) at 0 °C in lOh. Unlike the monomerie version 72 the chiral catalyst 70 used in this study was recoverable and recyclable several times with retention of its performance (Table 10)... [Pg.333]


See other pages where Non chiral catalysts is mentioned: [Pg.17]    [Pg.527]    [Pg.802]    [Pg.510]    [Pg.71]    [Pg.205]    [Pg.106]    [Pg.17]    [Pg.527]    [Pg.802]    [Pg.510]    [Pg.71]    [Pg.205]    [Pg.106]    [Pg.224]    [Pg.150]    [Pg.164]    [Pg.175]    [Pg.248]    [Pg.219]    [Pg.209]    [Pg.52]    [Pg.77]    [Pg.53]    [Pg.369]    [Pg.1430]    [Pg.1611]    [Pg.180]    [Pg.519]    [Pg.93]    [Pg.294]    [Pg.189]    [Pg.70]    [Pg.68]    [Pg.173]    [Pg.485]    [Pg.240]    [Pg.714]   
See also in sourсe #XX -- [ Pg.757 ]




SEARCH



Chiral catalysts

© 2024 chempedia.info