Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

NMR spectroscopy spectra

Thus, in the area of combinatorial chemistry, many compounds are produced in short time ranges, and their structures have to be confirmed by analytical methods. A high degree of automation is required, which has fueled the development of software that can predict NMR spectra starting from the chemical structure, and that calculates measures of similarity between simulated and experimental spectra. These tools are obviously also of great importance to chemists working with just a few compounds at a time, using NMR spectroscopy for structure confirmation. [Pg.518]

In this second empirical approach, which has also been used for C NMR spectra, predictions are based on tabulated chemical shifts for classes of structures, and corrected with additive contributions from neighboring functional groups or substructures. Several tables have been compiled for different types of protons. Increment rules can be found in nearly any textbook on NMR spectroscopy. [Pg.522]

In contrast to IR and NMR spectroscopy, the principle of mass spectrometry (MS) is based on decomposition and reactions of organic molecules on theii way from the ion source to the detector. Consequently, structure-MS correlation is basically a matter of relating reactions to the signals in a mass spectrum. The chemical structure information contained in mass spectra is difficult to extract because of the complicated relationships between MS data and chemical structures. The aim of spectra evaluation can be either the identification of a compound or the interpretation of spectral data in order to elucidate the chemical structure [78-80],... [Pg.534]

Nuclear magnetic resonance (NMR) spectroscopy is a valuable technique for obtaining chemical information. This is because the spectra are very sensitive to changes in the molecular structure. This same sensitivity makes NMR a difficult case for molecular modeling. [Pg.252]

Not only is pulsed FT NMR the best method for obtaining proton spectra it is the only practical method for many other nuclei including It also makes possible a large number of sophisticated techniques that have revolutionized NMR spectroscopy... [Pg.524]

Section 20 21 Acyl chlorides anhydrides esters and amides all show a strong band for C=0 stretching m the infrared The range extends from about 1820 cm (acyl chlorides) to 1690 cm (amides) Their NMR spectra are characterized by a peak near 8 180 for the carbonyl carbon H NMR spectroscopy is useful for distinguishing between the groups R and R m esters (RCO2R ) The protons on the carbon bonded to O m R appear at lower field (less shielded) than those on the carbon bonded to C=0... [Pg.877]

It is not the purpose of this book to discuss in detail the contributions of NMR spectroscopy to the determination of molecular structure. This is a specialized field in itself and a great deal has been written on the subject. In this section we shall consider only the application of NMR to the elucidation of stereoregularity in polymers. Numerous other applications of this powerful technique have also been made in polymer chemistry, including the study of positional and geometrical isomerism (Sec. 1.6), copolymers (Sec. 7.7), and helix-coil transitions (Sec. 1.11). We shall also make no attempt to compare the NMR spectra of various different polymers instead, we shall examine only the NMR spectra of different poly (methyl methacrylate) preparations to illustrate the capabilities of the method, using the first system that was investigated by this technique as the example. [Pg.482]

Two-dimensional nmr spectroscopy has led to a much better understanding of biopolymers and their function (151). This technique has been apphed to polyacrylamide for absolute assignments of proton and carbon spectra at the tetrad level (152). [Pg.144]

Proton and carbon-13 nmr spectroscopy provides detailed information on all types of hydrogen and carbon atoms, thus enabling identification of functional groups and types of linkages ia the lignin stmcture. Detailed a ssignments of signals ia proton and carbon-13 nmr spectra have been pubHshed... [Pg.141]

However, a second mole of alcohol or hemiformal caimot be added at the ordinary pH of such solutions. The equiUbrium constant for hemiformal formation depends on the nature of the R group of the alcohol. Using nmr spectroscopy, a group of alcohols including phenol has been examined in solution with formaldehyde (15,16). The spectra indicated the degree of hemiformal formation in the order of >methanol > benzyl alcohol >phenol. Hemiformal formation provides the mechanism of stabilization methanol is much more effective than phenol in this regard. [Pg.293]

J3 4 = 3.45-4.35 J2-4 = 1.25-1.7 and J2-5 = 3.2-3.65 Hz. The technique can be used quantitatively by comparison with standard spectra of materials of known purity. C-nmr spectroscopy of thiophene and thiophene derivatives is also a valuable technique that shows well-defined patterns of spectra. C chemical shifts for thiophene, from tetramethylsilane (TMS), are 127.6, C 125.9, C 125.9, and C 127.6 ppm. [Pg.19]

The possibility offered by new instruments to obtain N NMR spectra using natural abundance samples has made " N NMR spectroscopy a method which holds no interest for the organic chemist, since the chemical shifts are identical and the signal resolution incomparably better with the N nucleus (/ = ) than with " N (/ = 1). H- N coupling constants could be obtained from natural abundance samples by N NMR and more accurately from N-labelled compounds by H NMR. Labelled compounds are necessary to measure the and N- N coupling constants. [Pg.193]

In C NMR spectroscopy, three kinds of heteronuclear spin decoupling are used In proton broadband decoupling of C NMR spectra, decoupling is carried out unselectively across a frequency range which encompasses the whole range of the proton shifts. The speetrum then displays up to n singlet signals for the n non-equivalent C atoms of the moleeule. [Pg.7]

The spin-lattice relaxation time, T/, is the time constant for spin-lattice relaxation which is specific for every nuclear spin. In FT NMR spectroscopy the spin-lattice relaxation must keep pace with the exciting pulses. If the sequence of pulses is too rapid, e.g. faster than BT/max of the slowest C atom of a moleeule in carbon-13 resonance, a decrease in signal intensity is observed for the slow C atom due to the spin-lattice relaxation getting out of step. For this reason, quaternary C atoms can be recognised in carbon-13 NMR spectra by their weak signals. [Pg.10]


See other pages where NMR spectroscopy spectra is mentioned: [Pg.202]    [Pg.45]    [Pg.567]    [Pg.221]    [Pg.42]    [Pg.224]    [Pg.567]    [Pg.1662]    [Pg.202]    [Pg.45]    [Pg.567]    [Pg.221]    [Pg.42]    [Pg.224]    [Pg.567]    [Pg.1662]    [Pg.1488]    [Pg.1499]    [Pg.1508]    [Pg.1572]    [Pg.526]    [Pg.204]    [Pg.396]    [Pg.75]    [Pg.220]    [Pg.391]    [Pg.9]    [Pg.11]    [Pg.234]    [Pg.249]    [Pg.16]    [Pg.211]    [Pg.131]    [Pg.139]    [Pg.266]    [Pg.390]    [Pg.19]    [Pg.48]    [Pg.265]    [Pg.92]    [Pg.112]    [Pg.1057]    [Pg.526]   
See also in sourсe #XX -- [ Pg.185 ]




SEARCH



NMR spectroscopy NOESY spectra

NMR spectroscopy isotope-edited spectra

© 2024 chempedia.info