Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitroxide mediated polymerization transfer

Hawker et al. 2001 Hawker and Wooley 2005). Recent developments in living radical polymerization allow the preparation of structurally well-defined block copolymers with low polydispersity. These polymerization methods include atom transfer free radical polymerization (Coessens et al. 2001), nitroxide-mediated polymerization (Hawker et al. 2001), and reversible addition fragmentation chain transfer polymerization (Chiefari et al. 1998). In addition to their ease of use, these approaches are generally more tolerant of various functionalities than anionic polymerization. However, direct polymerization of functional monomers is still problematic because of changes in the polymerization parameters upon monomer modification. As an alternative, functionalities can be incorporated into well-defined polymer backbones after polymerization by coupling a side chain modifier with tethered reactive sites (Shenhar et al. 2004 Carroll et al. 2005 Malkoch et al. 2005). The modification step requires a clean (i.e., free from side products) and quantitative reaction so that each site has the desired chemical structures. Otherwise it affords poor reproducibility of performance between different batches. [Pg.139]

The controlled emulsion polymerization of styrene using nitroxide-mediated polymerization (NMP), reversible addition-fragmentation transfer polymerization (RAFT), stable free radical polymerization (SFR), and atom transfer radical polymerization (ATRP) methods is described. The chain transfer agent associated with each process was phenyl-t-butylnitrone, nitric oxide, dibenzyl trithiocarbonate, 1,1-diphenylethylene, and ethyl 2-bromo-isobutyrate, respectively. Polydispersities between 1.17 and 1.80 were observed. [Pg.595]

There are four principal mechanisms that have been put forward to achieve living free-radical polymerization (1) Polymerization with reversible termination by coupling, the best example in this class being the alkoxyamine-initiated or nitroxide-mediated polymerization, as first described by Solomon et al. (1985) (2) polymerization with reversible termination by hgand transfer to a metal complex (usually abbreviated as ATRP),(Wang and Matyjaszewski, 1995) (3) polymerization with reversible chain transfer (also termed degenerative chain transfer)-, and (4) reversible addition/ffagmentation chain transfer (RAFT). [Pg.410]

The fifty chapters submitted for publication in the ACS Symposium series could not fit into one volume and therefore we decided to split them into two volumes. In order to balance the size of each volume we did not divide the chapters into volumes related to mechanisms and materials but rather to those related to atom transfer radical polymerization (ATRP) and to other controlled/living radical polymerization methods reversible-addition fragmentation transfer (RAFT) and other degenerative transfer techniques, as well as stable free radical pol5mierizations (SFRP) including nitroxide mediated polymerization (NMP) and organometallic mediated radical polymerization (OMRP). [Pg.2]

Controlled/ Living radical polymerization (CRP) of vinyl acetate (VAc) via nitroxide-mediated polymerization (NMP), organocobalt-mediated polymerization, iodine degenerative transfer polymerization (DT), reversible radical addition-fragmentation chain transfer polymerization (RAFT), and atom transfer radical polymerization (ATRP) is summarized and compared with the ATRP of VAc catalyzed by copper halide/2,2 6 ,2 -terpyridine. The new copper catalyst provides the first example of ATRP of VAc with clear mechanism and the facile synthesis of poly(vinyl acetate) and its block copolymers. [Pg.139]

VAc has been successfully polymerized via controlled/ living radical polymerization techniques including nitroxide-mediated polymerization, organometallic-mediated polymerization, iodine-degenerative transfer polymerization, reversible radical addition-fragmentation chain transfer polymerization, and atom transfer radical polymerization. These methods can be used to prepare well-defined various polymer architectures based on PVAc and poly(vinyl alcohol). The copper halide/t is an active ATRP catalyst for VAc, providing a facile synthesis of PVAc and its block copolymers. Further developments of this catalyst will be the improvements of catalytic efficiency and polymerization control. [Pg.155]

Controlled Radical Polymerization (CRP) is the most recently developed polymerization technology for the preparation of well defined functional materials. Three recently developed CRP processes are based upon forming a dynamic equilibrium between active and dormant species that provides a slower more controlled chain growth than conventional radical polymerization. Nitroxide Mediated Polymerization (NMP), Atom Transfer Radical Polymerization (ATRP) and Reversible Addition Fragmentation Transfer (RAFT) have been developed, and improved, over the past two decades, to provide control over radical polymerization processes. This chapter discusses the patents issued on ATRP initiation procedures, new functional materials prepared by CRP, and discusses recent improvements in all three CRP processes. However the ultimate measure of success for any CRP system is the preparation of conunercially viable products using acceptable economical manufacturing procedures. [Pg.385]

As a result of CMU s IP focus, 21 of the 28 issued US patents, pins several active applications, protect the fundamental ATRP process or improvements in the fundamental process, (26,27,30,33-48) while only five of the twenty eight address novel polymer compositions. (28,29,36,49,50) Nevertheless, these early material-focused patents disclose a nnmber of materials that were not prepared by other CRP procednres until a later date. The difference in numbers is due to the fact that two issued patents are directed towards improvements in nitroxide mediated polymerization. (20,51) The first discloses an atom transfer radical addition reaction to form an alkoxyamine that has fonnd nse in ATRP kinetic studies, and the other focnses on rate enhancement of a NMP. [Pg.391]

Besides the ATRP method, other controlled radical polymerization techniques such as reversible addition/fragmentation chain transfer polymerization (RAFT) (Zhang et al., 2007) and nitroxide-mediated polymerization (NMP) (Yoshida and Ohta, 2005), have also been explored to synthesize azo BCs. [Pg.414]

Nitroxide-mediated polymerization (NMP) [3] and atom transfer radical polymerization (ATRP) [4, 5] are the two main methods of CRP based on a reversible termination reaction. This corresponds to an equilibrium between the active macromolecular radical and a dormant covalent counterpart, which is either an alkoxyamine for NMP or an alkyl halide for ATRP (Fig. 1). Activation of the alkoxyamine is a thermal process and requires elevated temperatures, whereas in... [Pg.129]

In this review, the term macromer is used to describe oligomer or polymer precursors that undergo reversible association to form supramolecular polymers or networks. Macromer synthesis, although a crucial aspect of supramolecular science, is also out of the scope of this review. Several comprehensive reviews of the synthesis of H-bonding polymers are available [10, 11,42] and primarily describe the application of controlled radical polymerization techniques, including atom-transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT) polymerization, and nitroxide-mediated polymerization (NMP). For synthesis of telechelic polymers, avoiding monofunctional impurities that can act as chain stoppers is crucially important [43],... [Pg.53]

E. Kaul, V. Senkovskyy, R. Tkachov, V. Bocharova, H. Komber, M. Stamm, A. Kiriy, Synthesis of a Bifunctional Initiator for Controlled Kumada Catalyst- Transfer Polycondensation/Nitroxide-Mediated Polymerization and Preparation of Poly(3-Hexylthiophene)-Polystyrene Block Copolymer Therefrom. Macromolecules 2010,43,77-81. [Pg.102]

M. C. lovu, C. R. Craley, M. Jeffries-EL, A. B. Krankowski, R. Zhang, T. Kowalewski, R. D. McCullough, Conducting Regioregular Polythiophene Block Copolymer Nanofibrils Synthesized by Reversible Addition Fragmentation Chain Transfer Polymerization (RAFT) and Nitroxide Mediated Polymerization (NMP). Macromolecules 2007,40,4733-4735. [Pg.110]

Controlled radical polymerization techniques are suitable for synthesizing polymers with a high level of architectural control. Notably, they not only allow a copolymerization with functional monomers (as shown previously for free-radical polymerization), but also a simple functionalization of the chain end by the initiator. Miniemulsion systems were found suitable for conducting controlled radical polymerizations [58-61], including atom transfer radical polymerization (ATRP), RAFT, degenerative iodine transfer [58], and nitroxide-mediated polymerization (NMP). Recently, the details of ATRP in miniemulsion were described in several reviews [62, 63], while the kinetics of RAFT polymerization in miniemulsion was discussed by Tobita [64]. Consequently, no detailed descriptions of the process wiU be provided at this point. [Pg.457]


See other pages where Nitroxide mediated polymerization transfer is mentioned: [Pg.616]    [Pg.174]    [Pg.63]    [Pg.22]    [Pg.7]    [Pg.87]    [Pg.14]    [Pg.102]    [Pg.113]    [Pg.190]    [Pg.84]    [Pg.7]    [Pg.88]    [Pg.36]    [Pg.310]    [Pg.401]    [Pg.6]    [Pg.128]    [Pg.270]    [Pg.666]    [Pg.107]    [Pg.5]    [Pg.471]    [Pg.581]    [Pg.223]    [Pg.64]    [Pg.67]    [Pg.270]    [Pg.926]    [Pg.285]    [Pg.203]    [Pg.415]   
See also in sourсe #XX -- [ Pg.148 , Pg.149 ]




SEARCH



Mediated polymerization

Nitroxide

Nitroxide-mediated polymerization

Nitroxides

© 2024 chempedia.info