Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrous acid mechanism

Make a thin paste of 21 5 g. of finely-powdered o-tolidine (a commercial product) with 300 ml. of water in a 1-litre beaker, add 25 g. (21 ml.) of concentrated hydrochloric acid, and warm until dissolved. Cool the solution to 10° with ice, stir mechanically, and add a further 25 g. (21 ml.) of concentrated hydrochloric acid (1) partial separation of o tolidine dihydrochloride will occur. Add a solution of 15 g, of sodium nitrite in 30 ml. of water as rapidly as possible, but keep the temperature below 15° a slight excess of nitrous acid is not harmful in this preparation. Add the clear, orange tetrazonium solution to 175 ml. of 30 per cent, hypophosphorous acid (2), and allow the mixture to stand, loosely stoppered, at room temperature for 16-18 hours. Transfer to a separatory funnel, and remove the upper red oily layer. Extract the aqueous layer with 50 ml, of benzene. Dry the combined upper layer and benzene extract with anhydrous magnesium sulphate, and remove the benzene by distillation (compare Fig. II, 13, 4) from a Widmer or similar flask (Figs. II, 24, 3-5) heat in an oil bath to 150° to ensure the removal of the last traces of benzene. Distil the residue at ca. 3 mm. pressure and a temperature of 155°. Collect the 3 3 -dimethyldiphenyl as a pale yellow liquid at 114-115°/3 mm. raise the bath temperature to about 170° when the temperature of the thermometer in the flask commences to fall. The yield is 14 g. [Pg.616]

Place 130 ml. of concentrated hj drochloric acid in a 1 - 5 litre round-bottomed flask, equipped ith a mechanical stirrer and immersed in a freezing mixture of ice and salt. Start the stirrer and, when the temperature has fallen to about 0°, add 60 g. of finely-crushed ice (1), run in 47 5 g. (46 5 ml.) of pure aniline during about 5 minutes, and then add another 60 g. of crushed ice. Dissolve 35 g. of sodium nitrite in 75 ml. of water, cool to 0-3°, and run in the cold solution from a separatory funnel, the stem of which reaches nearly to the bottom of the flask. During the addition of the nitrite solution (ca. 20 minutes), stir vigorously and keep the temperature as near 0° as possible by the frequent addition of crushed ice. There should be a slight excess of nitrous acid (potassium iodide-starch paper test) at the end of 10 minutes after the last portion of nitrite is added. [Pg.636]

We are not concerned here with the mechanism of nitrosation, but with the anticatalytic effect of nitrous acid upon nitration, and with the way in which this is superseded with very reactive compounds by an indirect mechanism for nitration. The term nitrous acid indicates all the species in a solution which, after dilution with water, can be estimated as nitrous acid. [Pg.54]

In contrast to its effect upon the general mechanism of nitration by the nitronium ion, nitrous acid catalyses the nitration of phenol, aniline, and related compounds. Some of these compounds are oxidised under the conditions of reaction and the consequent formation of more nitrous acids leads to autocatalysis. [Pg.57]

The kinetics of nitration of anisole in solutions of nitric acid in acetic acid were complicated, for both autocatalysis and autoretardation could be observed under suitable conditions. However, it was concluded from these results that two mechanisms of nitration were operating, namely the general mechanism involving the nitronium ion and the reaction catalysed by nitrous acid. It was not possible to isolate these mechanisms completely, although by varying the conditions either could be made dominant. [Pg.57]

The catalysis was very strong, for in the absence of nitrous acid nitration was very slow. The rate of the catalysed reaction increased steeply with the concentration of nitric acid, but not as steeply as the zeroth-order rate of nitration, for at high acidities the general nitronium ion mechanism of nitration intervened. [Pg.58]

The effect of nitrous acid on the nitration of mesitylene in acetic acid was also investigated. In solutions containing 5-7 mol 1 of nitric acid and < c. 0-014 mol of nitrous acid, the rate was independent of the concentration of the aromatic. As the concentration of nitrous acid was increased, the catalysed reaction intervened, and superimposed a first-order reaction on the zeroth-order one. The catalysed reaction could not be made sufficiently dominant to impose a truly first-order rate. Because the kinetic order was intermediate the importance of the catalysed reaction was gauged by following initial rates, and it was shown that in a solution containing 5-7 mol 1 of nitric acid and 0-5 mol 1 of nitrous acid, the catalysed reaction was initially twice as important as the general nitronium ion mechanism. [Pg.58]

Under the conditions mentioned, i-methylnaphthalene was nitrated appreciably faster than was mesitylene, and the nitration was strongly catalysed by nitrous acid. The mere fact of reaction at a rate greater than the encounter rate demonstrates the incursion of a new mechanism of nitration, and its characteristics identify it as nitration via nitrosation. [Pg.60]

Under the same conditions the even more reactive compounds 1,6-dimethylnaphthalene, phenol, and wt-cresol were nitrated very rapidly by an autocatalytic process [nitrous acid being generated in the way already discussed ( 4.3.3)]. However, by adding urea to the solutions the autocatalytic reaction could be suppressed, and 1,6-dimethyl-naphthalene and phenol were found to be nitrated about 700 times faster than benzene. Again, the barrier of the encounter rate of reaction with nitronium ions was broken, and the occurrence of nitration by the special mechanism, via nitrosation, demonstrated. [Pg.60]

Dewar and his co-workers, as mentioned above, investigated the reactivities of a number of polycyclic aromatic compounds because such compounds could provide data especially suitable for comparison with theoretical predictions ( 7.2.3). This work was extended to include some compounds related to biphenyl. The results were obtained by successively compounding pairs of results from competitive nitrations to obtain a scale of reactivities relative to that of benzene. Because the compounds studied were very reactive, the concentrations of nitric acid used were relatively small, being o-i8 mol 1 in the comparison of benzene with naphthalene, 5 x io mol 1 when naphthalene and anthanthrene were compared, and 3 x io mol 1 in the experiments with diphenylamine and carbazole. The observed partial rate factors are collected in table 5.3. Use of the competitive method in these experiments makes them of little value as sources of information about the mechanisms of the substitutions which occurred this shortcoming is important because in the experiments fuming nitric acid was used, rather than nitric acid free of nitrous acid, and with the most reactive compounds this leads to a... [Pg.82]

The evidence outlined strongly suggests that nitration via nitrosation accompanies the general mechanism of nitration in these media in the reactions of very reactive compounds.i Proof that phenol, even in solutions prepared from pure nitric acid, underwent nitration by a special mechanism came from examining rates of reaction of phenol and mesi-tylene under zeroth-order conditions. The variation in the initial rates with the concentration of aromatic (fig. 5.2) shows that mesitylene (o-2-0 4 mol 1 ) reacts at the zeroth-order rate, whereas phenol is nitrated considerably faster by a process which is first order in the concentration of aromatic. It is noteworthy that in these solutions the concentration of nitrous acid was below the level of detection (< c. 5 X mol... [Pg.91]

Despite the fact that solutions of acetyl nitrate prepared from purified nitric acid contained no detectable nitrous acid, the sensitivity of the rates of nitration of very reactive compounds to nitrous acid demonstrated in this work is so great that concentrations of nitrous acid below the detectable level could produce considerable catalytic effects. However, because the concentration of nitrous acid in these solutions is unknown the possibility cannot absolutely be excluded that the special mechanism is nitration by a relatively unreactive electrophile. Whatever the nature of the supervenient reaction, it is clear that there is at least a dichotomy in the mechanism of nitration for very reactive compounds, and that, unless the contributions of the separate mechanisms can be distinguished, quantitative comparisons of reactivity are meaningless. [Pg.91]

Treatment of adenosine with nitrous acid gives a nucleoside known as mosine Suggest a reasonable mechanism for this reaction... [Pg.1190]

In a polluted or urban atmosphere, O formation by the CH oxidation mechanism is overshadowed by the oxidation of other VOCs. Seed OH can be produced from reactions 4 and 5, but the photodisassociation of carbonyls and nitrous acid [7782-77-6] HNO2, (formed from the reaction of OH + NO and other reactions) are also important sources of OH ia polluted environments. An imperfect, but useful, measure of the rate of O formation by VOC oxidation is the rate of the initial OH-VOC reaction, shown ia Table 4 relative to the OH-CH rate for some commonly occurring VOCs. Also given are the median VOC concentrations. Shown for comparison are the relative reaction rates for two VOC species that are emitted by vegetation isoprene and a-piuene. In general, internally bonded olefins are the most reactive, followed ia decreasiag order by terminally bonded olefins, multi alkyl aromatics, monoalkyl aromatics, C and higher paraffins, C2—C paraffins, benzene, acetylene, and ethane. [Pg.370]

The mechanism is presumed to involve a pathway related to those proposed for other base-catalyzed reactions of isocyanoacetates with Michael acceptors. Thus base-induced formation of enolate 9 is followed by Michael addition to the nitroalkene and cyclization of nitronate 10 to furnish 11 after protonation. Loss of nitrous acid and aromatization affords pyrrole ester 12. [Pg.71]

The mechanism of cyclization of diaminopyrimidines by nitrous acid appears not to have been studied in detail. For the preparative procedure an aqueous solution of alkaline nitrite is treated with the diaminopyrimidine either in the form of a salt or with simultaneous addition of hydrochloric or acetic acid. The first phase of the reaction is usually carried out at 0°C, in some cases the reaction being terminated by heating to 50-60°C. With diaminopyrimidines which are sparingly soluble in water, the reaction was carried out in an organic solvent using amylnitrite. Excess nitrous acid can possibly attack the amino groups present. This was employed in some cases for the preparation of the hydroxy derivatives. ... [Pg.243]

A mixture of 280 g. (1.52 moles) of commercial benzidine and 880 cc. (10.23 moles) of concentrated hydrochloric acid (sp. gr. 1.182) is placed in a 5-I. round-bottomed flask and wanned on a steam bath for one to two hours, with occasional shaking, to form the dihydrochloride. The flask is then equipped with a mechanical stirrer and a dropping funnel, and cooled, with stirring, to — ro° in an ice-salt bath. When this temperature has been reached, the benzidine dihydrochloride is tetrazotized over a period of two hours with a solution of 232 g. (3.19 moles) of 95 per cent sodium nitrite in 800 cc. of water, until a faint test for nitrous acid with starch-iodide paper is obtained after twenty minutes. During this reaction, the temperature is kept below —5 °. [Pg.20]

We shall discuss ionic nitration mechanisms in terms of nitration by pure nitric acid and where appropriate comment on effects of such additives as sulfuric acid, water, nitrous acid etc. The nitration scheme now generally ac-... [Pg.259]

Titov claims that the free radical mechanism applies for nitration of aliphatic hydrocarbons, of aromatic side chains, of olefins, and of aromatic ring carbons, if irf the latter case the nitrating agent is ca 60—70% nitric acid that is free of nitrous acid, or even more dil acid if oxides of nitrogen are present... [Pg.261]

As described more fully in Sections 3.1-3.3, with increasing pH the reactive forms of the diazotizing agent are converted into ineffective ones, namely free nitrous acid, HN02, and the nitrite ion, N02. From the discussion of the mechanism of diazotization it will also become apparent why the reaction proceeds better, that is faster, in dilute hydrochloric than in dilute sulfuric acid. With very slow diazotizations for instance, because of high dilution as in nitrite titrations, the use... [Pg.12]

The position is complicated by several factors. The significance of the equilibria in which nitrous acid takes part will be detailed in the discussion of the mechanism... [Pg.21]

Analogies for such a mechanism in diazotization are found in the nitrous acid-catalyzed nitration of A,A-dimethylaniline, mesitylene, 4-nitrophenol, and some related compounds, which were investigated by 15N NMR spectroscopy in Ridd s group (Ridd and Sandall, 1981 Ridd et al., 1992 Clemens et al., 1984a, 1984b, 1985 Johnston et al., 1991 review Ridd, 1991). Ridd and coworkers were able to demonstrate clearly that not only the nitration proper, but also the preceding C-nitrosation, is accompanied by a marked 15N nuclear polarization. This was at-... [Pg.43]

Carbons adjacent to a Z group (as defined on p. 548) can be nitrosated with nitrous acid or alkyl nitrites. The initial product is the C-nitroso compound, but these are stable only when there is no tautomerizable hydrogen. When there is, the product is the more stable oxime. The situation is analogous to that with azo compounds and hydrazones (12-7). The mechanism is similar to that in 12-7 R—H —> R + N=0 — R—N=0. The attacking species is either NO or a carrier of it. When the substrate is a simple ketone, the mechanism goes through the enol (as in halogenation 12-4) ... [Pg.780]

Pryor, W.A. and Lightsey, J.W. 1981. Mechanisms of nitrogen dioxide reactions Initiation of lipid peroxidation and the production of nitrous acid. Science 214 435 -37. [Pg.306]

Scheme 2.1 Simplified mechanism whereby organic nitrates (RONO2) effect vasorelaxation. Thiols (R -SH) interact with organic nitrates to give nitrite (NO2-), which is converted successively to nitrous acid (HONO) and NO. NO then reacts with a thiol (R11 —SH) to give a nitrosothiol... Scheme 2.1 Simplified mechanism whereby organic nitrates (RONO2) effect vasorelaxation. Thiols (R -SH) interact with organic nitrates to give nitrite (NO2-), which is converted successively to nitrous acid (HONO) and NO. NO then reacts with a thiol (R11 —SH) to give a nitrosothiol...

See other pages where Nitrous acid mechanism is mentioned: [Pg.44]    [Pg.44]    [Pg.611]    [Pg.60]    [Pg.92]    [Pg.208]    [Pg.242]    [Pg.446]    [Pg.260]    [Pg.42]    [Pg.45]    [Pg.452]    [Pg.1015]    [Pg.699]    [Pg.817]    [Pg.875]    [Pg.611]    [Pg.52]    [Pg.54]    [Pg.87]    [Pg.122]    [Pg.34]    [Pg.41]   
See also in sourсe #XX -- [ Pg.380 ]




SEARCH



Acidizing mechanisms

Acids Nitrous acid

Mechanisms acids

Nitrous acid

© 2024 chempedia.info