Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitro azides, reduction

The reactivity of a 2-(2-oxopropyl) substituent in 4,5-dichloro- and 4,5-dichloro-6-nitro-3(2//)-pyridazinones, especially towards bromination, has been investigated. In the presence of sodium acetate/acetic acid in chloroform, bromination can be controlled to give mainly mono- or di-bromination of the methylene group, while in the absence of the buffer monobromination of the methyl group is favoured. The dibromomethylene derivative is readily hydrolyzed under mild basic conditions to regenerate the Y-unsubstituted pyridazinone <91JHC385>. Reactions of the monobromomethyl derivative (112) include displacement of bromine with azide, reduction to... [Pg.61]

Reduction of an azide a nitrile or a nitro compound furnishes a primary amine A method that provides access to primary secondary or tertiary amines is reduction of the carbonyl group of an amide by lithium aluminum hydride... [Pg.933]

The preparation of amines by the methods described m this section involves the prior synthesis and isolation of some reducible material that has a carbon-nitrogen bond an azide a nitrile a nitro substituted arene or an amide The following section describes a method that combines the two steps of carbon-nitrogen bond formation and reduction into a single operation Like the reduction of amides it offers the possibility of prepar mg primary secondary or tertiary amines by proper choice of starting materials... [Pg.934]

Replacement of chlorine on the pendant benzoyl group by azide is apparently consistent with antiinflammatory activity. Acylation of indomethacin intermediate with p-nitrobenzoyl chloride leads to the corresponding amide (7). Saponification ( ) followed by reduction of the nitro group gives the amine 9. The diazonium salt (10) obtained on treatment with nitrous acid is then reacted with sodium azide there is thus obtained zidomethacin (11). [Pg.166]

Reductive alkylations have been carried out successfully with compounds that are not carbonyls or amines, but which are transformed during the hydrogenation to suitable functions. Azides, azo, hydrazo, nitro and nitroso compounds, oximes, pyridines, and hydroxylamines serve as amines phenols, acetals, ketals, or hydrazones serve as carbonyls 6,7,8,9,12,17,24,41,42,58). Alkylations using masked functions have been successful at times when use of unmasked functions have failed (2). In a synthesis leading to methoxatin, a key... [Pg.88]

See Other CATALYTIC NITRO REDUCTION PROCESSES, HYDROGENATION INCIDENTS, ORGANIC AZIDES... [Pg.633]

Azide 367 is prepared from 4-r -butyl-2-nitroaniline in 76% yield by its diazotization followed by treatment with sodium azide. In a 1,3-dipolar cycloaddition with cyanoacetamide, azide 367 is converted to triazole 368 that without separation is directly subjected to Dimroth rearrangement to give derivative 369 in 46% yield. Reduction of the nitro group provides ortfc-phenylenediamine 371 in 91% yield <2000EJM715>. Cyclocondensation of diamine 371 with phosgene furnishes benzimidazol-2-one 370 in 39% yield, whereas its reaction with sodium nitrite in 18% HC1 leads to benzotriazole derivative 372, which is isolated in 66% yield (Scheme 59). Products 370 and 372 exhibit potassium channel activating ability <2001FA841>. [Pg.48]

As discussed above, the nitro groups of tetranitromethane and trinitromethyl compounds are susceptible to nucleophilic attack. Both potassium iodide and alkaline hydrogen peroxide affect the reductive denitration of trinitromethyl groups to em-nitronitronates 1,1,1-trinitroethane (33) is quantitatively reduced to potassium 1,1-dinitroethane (24) on treatment with alkaline hydrogen peroxide. Nucleophiles such as potassium fluoride in DMF can displace nitrite anion from tetranitromethane. Various nucleophiles, including azide, chloride, fluoride and ethoxide have been used to displace one of the nitro groups from fluorotrinitromethane. [Pg.53]

Reductions with aluminum are carried out almost exclusively with aluminum amalgam. This is prepared by immersing strips of a thin aluminum foil in a 2% aqueous solution of mercuric chloride for 15-60 seconds, decanting the solution, rinsing the strips with absolute ethanol, then with ether, and cutting them with scissors into pieces of approximately 1 cm [141,142]. In aqueous and non-polar solvents aluminum amalgam reduces cumulative double bonds [143], ketones to pinacols [144], halogen compounds [145], nitro compounds [146, 147], azo compounds [148], azides [149], oximes [150] and quinones [151], and cleaves sulfones [141, 152, 153] and phenylhydrazones [154] (Procedure 30, p. 212). [Pg.27]

Neither aromatic halogens [232,602] nor nitro groups were affected during the reductions of the azido group [232, 247, 602]. a-Iodo azides gave, on reduction, aziridines or alkenes depending on the substituents and on the reagents used [603]. [Pg.76]

The synthesis of a triptan with a chiral side chain begins by reduction of the carboxylic acid in chiral 4-nitrophenylalanine (15-1). The two-step procedure involves conversion of the acid to its ester by the acid chloride by successive reaction with thionyl chloride and then methanol. Treatment of the ester with sodium borohy-dride then afford the alanilol (15-2). Reaction of this last intermediate with phosgene closes the ring to afford the oxazolidone (15-3) the nitro group is then reduced to the aniline (15-4). The newly obtained amine is then converted to the hydrazine (15-5). Reaction of this product with the acetal from 3-chloropropionaldehyde followed by treatment of the hydrazone with acid affords the indole (15-6). The terminal halogen on the side chain is then replaced by an amine by successive displacement by means of sodium azide followed by catalytic reduction of the azide. The newly formed amine is then methylated by reductive alkylation with formaldehyde in the presence of sodium cyanoborohydride to afford zolmitriptan (15-7) [15]. [Pg.392]

Oxidative cleavage of amines 9-39 Reduction of amides 9-47 Reduction of nitro compounds 9-50 Reduction of nitroso compounds or hydroxylamincs 9-51 Reduction of oximes 9-52 Reduction of azides 9-53 Reduction of isocyanates, isothiocyanates, or N-nitroso compounds 9-55 Reduction of amine oxides 9-59 Reduction of azo, azoxy, or hydrazo compounds... [Pg.1277]

Curtius rearrangement of the heteroaroyl azides, obtained from the reaction of the carboxylic acid chlorides with sodium azide, provides a route to the amino-pyrroles and -indoles (e.g. B-70MI30504, B-77MI30506, 78CPB1054), which, because of the ease of synthesis of the carboxylic acids, is frequently preferable to reduction of the nitro compounds. [Pg.288]

The most common preparations of amines on insoluble supports include nucleophilic aliphatic and aromatic substitutions, Michael-type additions, and the reduction of imines, amides, nitro groups, and azides (Figure 10.1). Further methods include the addition of carbon nucleophiles to imines (e.g. the Mannich reaction) and oxidative degradation of carboxylic acids or amides. Linkers for primary, secondary, and tertiary amines are discussed in Sections 3.6, 3.7, and 3.8. [Pg.263]


See other pages where Nitro azides, reduction is mentioned: [Pg.190]    [Pg.902]    [Pg.185]    [Pg.34]    [Pg.177]    [Pg.81]    [Pg.550]    [Pg.346]    [Pg.20]    [Pg.259]    [Pg.33]    [Pg.61]    [Pg.1056]    [Pg.252]    [Pg.122]    [Pg.607]    [Pg.361]    [Pg.81]    [Pg.177]   
See also in sourсe #XX -- [ Pg.76 , Pg.183 ]




SEARCH



Azides, reduction

Nitro reductions

© 2024 chempedia.info