Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel phenolate

Ligand-free catalysts have been prepared from the following types of nickel(II) compounds nickel salts of long-chain aliphatic or aromatic carboxylic acids (10, 11) or of sulfonic acids (11), nickel enolates of /3-diketones (11) [e.g., nickel acetylacetonate (4, 12)] or their imino derivatives (11, 13), nickel phenolates (11), dithiocarbamates (14), and mer-captides (15). [Pg.108]

Four main types of antioxidants are commonly used in polypropylene stabilizer systems although many other types of chemical compounds have been suggested. These types include hindered phenolics, thiodi-propionate esters, aryl phosphites, and ultraviolet absorbers such as the hydroxybenzophenones and benzotriazoles. Other chemicals which have been reported include aromatic amines such as p-phenylenediamine, hydrocarbon borates, aminophenols, Zn and other metal dithiocarbamates, thiophosphates, and thiophosphites, mercaptals, chromium salt complexes, tin-sulfur compounds, triazoles, silicone polymers, carbon black, nickel phenolates, thiurams, oxamides, metal stearates, Cu, Zn, Cd, and Pb salts of benzimidazoles, succinic acid anhydride, and others. The polymeric phenolic phosphites described here are another type. [Pg.218]

An overview of stabilizer mechanisms and t5q>es of chemicals used for each mechanism is provided in Table 3. Further descriptions of these mechanisms follow. The three major classes of UV absorbers are 2-hydroxybenzophenones, 2-hydroxyphenylbenzotriazoles, and the newer 2-hydroxyphenyl-s-triazines. The nickel phenolates not only have excited state quenching capability, but also provide radical scavenging and hydroperoxide decomposing activity. The radical scavengers include hindered benzoates and hindered amines. The hindered amines have the added capability to decompose hydroperoxides. Another class of... [Pg.8706]

Radical scavenging Nickel phenolates Hindered amines Hindered benzoates... [Pg.8707]

Hydroperoxide decomposition Nickel phenolates Hindered amines Phosphites... [Pg.8707]

Nickel phenolate recommended for polyethylene agricultural film and polypropylene artificial turf applications. [Pg.81]

Storage. Phenol is shipped in dmms, tank tmcks, and tank cars. It is loaded and shipped at elevated temperatures as a bulk Hquid. In storage, phenol may acquire a yeUow, pink, or brown discoloration which makes it unusable for some purposes. The discoloration is promoted by the action of water, light, air, and catalysts, eg, traces of iron or copper. When stored as a solid in the original dmm or in nickel, glass-lined, or tanks lined with baked phenolic resin, phenol remains colorless for a number of weeks. [Pg.290]

Catalysts. In industrial practice the composition of catalysts are usuaUy very complex. Tellurium is used in catalysts as a promoter or stmctural component (84). The catalysts are used to promote such diverse reactions as oxidation, ammoxidation, hydrogenation, dehydrogenation, halogenation, dehalogenation, and phenol condensation (85—87). Tellurium is added as a passivation promoter to nickel, iron, and vanadium catalysts. A cerium teUurium molybdate catalyst has successfliUy been used in a commercial operation for the ammoxidation of propylene to acrylonitrile (88). [Pg.392]

Eor many polymeri2ations, MEHQ need not be removed instead, polymeri2ation initiators are added. Vinyhdene chloride from which the inhibitor has been removed should be refrigerated in the dark at —10° C, under a nitrogen atmosphere, and in a nickel-lined or baked phenolic-lined storage tank. If not used within one day, it should be reinhibited. [Pg.428]

The oxidation of cyclohexane to a mixture of cyclohexanol and cyclohexanone, known as KA-od (ketone—alcohol, cyclohexanone—cyclohexanol cmde mixture), is used for most production (1). The earlier technology that used an oxidation catalyst such as cobalt naphthenate at 180—250°C at low conversions (2) has been improved. Cyclohexanol can be obtained through a boric acid-catalyzed cyclohexane oxidation at 140—180°C with up to 10% conversion (3). Unreacted cyclohexane is recycled and the product mixture is separated by vacuum distillation. The hydrogenation of phenol to a mixture of cyclohexanol and cyclohexanone is usually carried out at elevated temperatures and pressure ia either the Hquid (4) or ia the vapor phase (5) catalyzed by nickel. [Pg.425]

Spiral-plate exchangers are fabricated from any material that can be cold worked and welded. Materials commonly used include carbo steel, stainless steel, nickel and nickel alloys, titanium, Hastelloys, and copper alloys. Baked phenolic-resin coatings are sometimes applied. Electrodes can also be wound into the assembly to anodically protect surfaces against corrosion. [Pg.36]

Nickel peroxide is a solid, insoluble oxidant prepared by reaction of nickel (II) salts with hypochlorite or ozone in aqueous alkaline solution. This reagent when used in nonpolar medium is similar to, but more reactive than, activated manganese dioxide in selectively oxidizing allylic or acetylenic alcohols. It also reacts rapidly with amines, phenols, hydrazones and sulfides so that selective oxidation of allylic alcohols in the presence of these functionalities may not be possible. In basic media the oxidizing power of nickel peroxide is increased and saturated primary alcohols can be oxidized directly to carboxylic acids. In the presence of ammonia at —20°, primary allylic alcohols give amides while at elevated temperatures nitriles are formed. At elevated temperatures efficient cleavage of a-glycols, a-ketols... [Pg.248]

The phenol is reduced with hydrogen in presence of finely divided metallic nickel which acts as a catalyst. The apparatus is shown in Fig. 79. [Pg.181]

Because of the industrial magnitude of these processes, many catalysts have been examined with variations in metal distribution, pore size, and alkalinity. In most synthetic work where catalyst life and small variations in yield are not of great importance, most palladium-on-carbon or -on-alumina powder catalysts will be found satisfactory for conversion of phenols to cyclohexanones. Palladium has a relatively low tendency to reduce aliphatic ketones, and a sharp decrease in the rate of absorption occurs at about 2 mol of consumed hydrogen. Nickel may also be used but overhydrogenation is more apt to occur. [Pg.127]

The kinetics of hydrogenation of phenol has already been studied in the liquid phase on Raney nickel (18). Cyclohexanone was proved to be the reaction intermediate, and the kinetics of single reactions were determined, however, by a somewhat simplified method. The description of the kinetics of the hydrogenation of phenol in gaseous phase on a supported palladium catalyst (62) was obtained by simultaneously solving a set of rate equations for the complicated reaction schemes containing six to seven constants. The same catalyst was used for a kinetic study also in the liquid phase (62a). [Pg.32]

The Kumada-Corriu reaction is characterized by mild conditions and clean conversions [2]. A disadvantage of previous Kumada-Corriu reactions was due to the use of homogeneous catalysts, with more difficult product separation. Recently, an unsymmetrical salen-type nickel(II) complex was synthesized with a phenol functionality that allows this compound to be linked to Merrifield resin polymer beads (see original citation in [2]). By this means, heterogeneously catalyzed Kumada-Corriu reactions have become possible. [Pg.486]

Several hydrido(phenoxo) complexes of nickel, trans-[NiH(OPh)L2] (6) (a L= P Prs b L = PCys c L = PBnj), have been prepared by the metathesis reaction of NaOPh with trans-[NiHClL2] (Eq. 6.6). The complex 6c was obtained as the phenol-solvated complex whose structure was determined by X-ray analysis [9]. An analogous platinum complex trans-[PtH(OPh)(PEt3)2] (7) was prepared by the reaction of trans-[PtH(N03)(PEt3)2] with NaOPh (Eq. 6.7). The complex 7 is air-stable but thermally sensitive and decomposes at room temperature. The structure was elucidated by X-ray analysis [10]. [Pg.173]


See other pages where Nickel phenolate is mentioned: [Pg.344]    [Pg.114]    [Pg.8707]    [Pg.13]    [Pg.344]    [Pg.114]    [Pg.8707]    [Pg.13]    [Pg.28]    [Pg.242]    [Pg.66]    [Pg.208]    [Pg.293]    [Pg.26]    [Pg.162]    [Pg.389]    [Pg.2094]    [Pg.2449]    [Pg.11]    [Pg.483]    [Pg.3]    [Pg.462]    [Pg.183]    [Pg.135]    [Pg.96]    [Pg.7]    [Pg.323]    [Pg.798]    [Pg.7]    [Pg.23]    [Pg.41]    [Pg.414]    [Pg.685]    [Pg.39]    [Pg.348]    [Pg.166]    [Pg.577]   
See also in sourсe #XX -- [ Pg.51 ]

See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Phenols, synthesis nickel-catalysed

Raney nickel phenols, ketones from

© 2024 chempedia.info