Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel complexes radical formation

As seen from Scheme 7.2, the epoxy-ring cleavage and nickel oxidation proceed simultaneously. The nickel-oxygen bond is formed. This results in the formation of the carbon-nickel biradical in which Ph-CH fragment can rotate freely. The cleavage of the (NiO)-C bond leads to the formation of a mixture of styrenes. At early reaction stages (30 min), cis and trans olefins are formed in 50 50 ratio. After a prolonged contact (30 h), when all possible transformations should be completed, the trans isomer becomes the main product and cis trans ratio becomes 5 95. Such enrichment of the mixture with the trans isomer follows from the formation of the di-P-(trimethylsilyl)styrene anion-radical and its isomerization. The styrene formed interacts with an excess of the nickel complex. [Pg.350]

In this system, the catalyst G3-I9 showed a similar reaction rate and turnover number as observed with the parent unsupported NCN-pincer nickel complex under the same conditions. This result is in contrast to the earlier observations for periphery-functionalized Ni-containing carbosilane dendrimers (Fig. 4), which suffer from a negative dendritic effect during catalysis due to the proximity of the peripheral catalytic sites. In G3-I9, the catalytic active center is ensconced in the core of the dendrimer, thus preventing catalyst deactivation by the previous described radical homocoupling formation (Scheme 4). [Pg.29]

A similar, but bimolecular, photoinduced reaction was observed on the basis of the nickel complex (28), p-toluene thiolate, and thioanisole reactants to generate methane and disulfide. The thiyl radical and Ni(I) complex was prepared by the photolysis of the Ni(II) complex (28) and j -toluene-thiolate anion in acetonitrile solution. Upon irradiation (A, = 350 nm) of the mixture of complex (28), j -toluene-thiolate ion, and thioanisole in acetonitrile under argon, gas chromatography-mass spectral analysis showed the formation of methane, ditolyl disulfide (TolS)2, and a mixed disulfide TolSSPh. The proposed catalytic mechanism is depicted in... [Pg.2905]

Disilanaphthalenes can be prepared by the thermolysis of a disilacyclopropane in deuteriated benzene the reaction may be monitored by NMR spectroscopy <83JA7776>. A mechanism of formation is proposed which involves Si—Si bond rupture followed by C—Si bond formation via a silyl radical. Thermolysis of 2-(mesityl)-2-(phenylethynyl)hexamethyltrisilane also results in two isomeric 1,3-disilanaphthalenes <860M1518> but better yields are achieved if the reaction (either thermally or photochemically) is catalyzed by a nickel complex <86JA7417, 890M2050>. Nickel-... [Pg.1141]

Few examples of this mechanism have been clearly demonstrated because of tfie difficulty in establishing that this path occurs from experimental data. The most well-established examples are reactions of nickel complexes with aryl halides Studied by Tsou and Kochi. The rate of the reaction of Ni(PEt3)jWith aryl halides was shown to be first order in nickel and in ArX and retarded by added PEtj, Ortho-methyl substituents had little effect on the rate. Because of the lack of steric effect, electron transfer was proposed to occur after formation of a TT-complex between Ni(PEt3)j and ArX, rather than by direct insertion of the metal into the carbon-halogen bond by a three-centered mechanism. Moreover, the products of the reaction included the Ni(I) species L3NiX and arene. Tliese products are likely to result from the pathway in Scheme 7.4, involving electron transfer from Ni(0) to the aryl halide and escape of the aryl radical from the solvent cage. Other studies of oxidative additions of aryl halides and sulfonates to Ni(0) complexes have been reported. " ... [Pg.305]

Light stabilizers are divided into three categories UV absorbers, free radical terminators, and quenchers (2). The UV absorbers will absorb the UV radiation to prevent the formation of free radicals. Hindered-amine light stabilizers (HALS) terminate the free radicals. They are more expensive than UV absorbers. The third category of light stabilizers are quenchers that are often represented by nickel complexes. Because of toxicity of heavy metals and substances of concern (SOCs) specification from OEMs and government regulations, quenchers are not as widely used. [Pg.282]

Dimethyl-I,l -biphenyl has been prepared by a wide variety of procedures, but few of these are of any practical synthetic utility Classical radical biarjl syntheses such as the Gomberg reaction or the thermal decomposition of diaroyl peroxides give complex mixtures of products m which 4,4 dimethyl-l.l -biphenyl is a minor constituent A radical process maj also be involved in the formation of 4,4 dimethyl-1, l -biphenyl (13%) by treatment of 4-bromotoluene with hydrazine hydrate 5 4,4 -Dimethyl-l,l -biphenyl has been obtained in moderate to good yield (68-89%) by treatment of either dichlorobis(4-methyl phenyl)tellurium or l,l -tellurobis(4-methylbenzene) with degassed Raney nickel in 2 methoxyethyl ether 6... [Pg.50]

It was first suggested that the reaction of an alkyl halide with a nickel(I) Schiff base complex yields an alkylnickel(III) intermediate (Equation (56)). Homolytic cleavage of RBr to give an alkyl radical R and a nickel(II) complex (Equation (57)) or, alternatively, one-electron dissociative reduction leading to R (Equation (58)) are possible pathways.254 A mechanism based on the formation of R via dissociative electron transfer of Ni -salen to RX (Equation (59)) has also been proposed.255... [Pg.487]

Bromoarenes are converted into the corresponding chloroarenes on treatment with sodium hypochlorite in the presence of a catalytic amount of nickel(II) tetraphenyl-porphin (NiTPP) and benzyltributylammonium bromide [8]. Fluoro and iodo substituents are not replaced. The reaction involves chlorine radical attack via the initial formation of a Ni(II)-OCl complex. Although high conversions are recorded, the procedure has not been extended for synthetic purposes. [Pg.30]

The decrease in catalytic activity of the nickel-containing carbosilane dendri-mer shown in Fig. 6.28 was attributed to the formation of mixed complexes with nickel in both oxidation states II and III on the dendrimer surface, which competes with the reaction with substrate radicals occurring in Kharash reactions (Fig. 6.29). [Pg.226]


See other pages where Nickel complexes radical formation is mentioned: [Pg.54]    [Pg.377]    [Pg.397]    [Pg.122]    [Pg.177]    [Pg.178]    [Pg.249]    [Pg.249]    [Pg.346]    [Pg.354]    [Pg.334]    [Pg.334]    [Pg.249]    [Pg.487]    [Pg.340]    [Pg.346]    [Pg.89]    [Pg.522]    [Pg.124]    [Pg.372]    [Pg.397]    [Pg.27]    [Pg.434]    [Pg.212]    [Pg.323]    [Pg.240]    [Pg.422]    [Pg.260]    [Pg.513]    [Pg.881]    [Pg.267]    [Pg.140]    [Pg.77]    [Pg.88]    [Pg.283]    [Pg.361]    [Pg.422]    [Pg.245]    [Pg.513]    [Pg.289]   
See also in sourсe #XX -- [ Pg.334 , Pg.335 ]

See also in sourсe #XX -- [ Pg.334 , Pg.335 ]




SEARCH



Formate radicals

Nickel Formate

Radical complexes

Radical formation

© 2024 chempedia.info