Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel-chromium steels, anodic

The anode seal which closes the sodium compartment is a nickel—chromium alloy (Inconel 600). The application of Inconel 600 minimizes the growth of thick inter-metallics and it was shown that seals of this material have been operated for over three years. Contrarily to Inconel, the application of mild steel as the anode seal material gave a life of only 6000 h due to gross intermetallic growth which caused sodium attack of this intermetallic layer in the mild steel. [Pg.576]

The properties of the interface metal/solution. Cast iron corrodes because of exposure of its graphite to the surface (graphitic corrosion), which is cathodic to both low-alloy and mild steels. The trim of a valve must always maintain dimensional accuracy and be free of pitting and hence it should stay cathodic to the valve body. Hence, in aggressive media, valve bodies are frequently chosen of steel rather than cast iron. Because of increased anodic polarization, low-alloy steel (Cr and Ni as noble components) is cathodic to normal steel in most natural media. Accordingly, steel bolts and nuts coupled to underground mild steel pipes, or a weld rod used for steel plates on the hull of a ship, should always be of a low-nickel, low chromium steel or from a similar composition to that of the steel pipe.7... [Pg.349]

Contact of brass, bronze, copper or the more resistant stainless steels with the 13% Cr steels in sea-water can lead to accelerated corrosion of the latter. Galvanic contact effects on metals coupled to the austenitic types are only slight with brass, bronze and copper, but with cadmium, zinc, aluminium and magnesium alloys, insulation or protective measures are necessary to avoid serious attack on the non-ferrous material. Mild steel and the 13% chromium types are also liable to accelerated attack from contact with the chromium-nickel grades. The austenitic materials do not themselves suffer anodic attack in sea-water from contact with any of the usual materials of construction. [Pg.545]

Because these variables have a very pronounced effect on the current density required to produce and also maintain passivity, it is necessary to know the exact operating conditions of the electrolyte before designing a system of anodic protection. In the paper and pulp industry a current of 4(KX) A was required for 3 min to passivate the steel surfaces after passivation with thiosulphates etc. in the black liquor the current was reduced to 2 7(X) A for 12 min and then only 600 A was necessary for the remainder of the process . From an economic aspect, it is normal, in the first instance, to consider anodically protecting a cheap metal or alloy, such as mild steel. If this is not satisfactory, the alloying of mild steel with a small percentage of a more passive metal, such as chromium, molybdenum or nickel, may decrease both the critical and passivation current densities to a sufficiently low value. It is fortunate that the effect of these alloying additions can be determined by laboratory experiments before application on an industrial scale is undertaken. [Pg.267]

Mechanically robust materials are metals, for example, different chromium-nickel steels, or titanium. Their use in electrochemical cells is limited because they are conductive and may corrode. The corrosion is significantly influenced when the metal is insulated or connected to the anode or to the cathode (see Fig. 9). [Pg.57]

The previous paragraph assumes that the ethanol will be dry (containing no water) and contain only very small amounts of contaminants such as chloride and sulfate ions that would greatly increase the corrosivity of ethanol. Ethanol produced for fuel purposes in the past has contained up to 5 volume percent water and ion concentrations that made it much more corrosive than pure ethanol [3.7]. For an ethanol fuel with these corrosion characteristics, it was found that aluminum and steel could be coated with cadmium, hard chromium, nickel, or anodized aluminum to make them compatible. Coatings such as zinc, lead, and phosphate were found to be inadequate to prevent corrosion [3.7]. [Pg.83]

Some firearms are plated with anodized aluminum, nickel, or chromium which gives durability and good looks, and some are made from stainless steel which is much less prone to rust than conventional steel. Electroless nickel coating is an alloy coating of 88% to 96% nickel and 4% to 12% phosphorus, which is produced by chemical (not electrical) reduction of nickel on to the metal surface. [Pg.100]

Active-passive behavior is dependent on the material-corrodent combination and is a function of the anodic or cathodic polarization effects, which occur in that specific combination. In most situations where active-passive behavior occurs, there is a thin layer at the metal surface that is more resistant to the environment than the underlying metal. In stainless steels, this layer is composed of various chromium and/or nickel oxides, which exhibit substantially different electrochemical characteristics than the underlying alloy. If this resistant, or passive, layer is damaged while in an aggressive environment, active corrosion of the freshly exposed surface will occur. The damage to... [Pg.787]

Some electrodes made from non-noble metals, such as stainless steel, can release metal ions through direct oxidation at the anode, or indirectly by the creation of a caustic environment at the cathode. For example, nickel and chromium ions were released from a... [Pg.2122]

The anodic polarization of a given alloy base metal such as iron or nickel is sensitive to alloying element additions and to heat treatments if the latter influences the homogeneity of solid solutions or the kinds and distribution of phases in the alloy. The effect of chromium in iron or nickel is to decrease both EpP and icrit and hence to enhance the ease of placing the alloy in the passive state. The addition of chromium to iron is the basis for a large number of alloys broadly called stainless steels, and chromium additions to nickel lead to a series of alloys with important corrosion-resistant properties. [Pg.206]

The effect of pH on the polarization of iron is shown in Fig. 5.6. The effect ofpH on the polarization of type 304 stainless steel (nominally 18 to 20 wt% Cr, 8 to 10.5 wt%Ni, 0.08 wt% C maximum) in environments based on 1 M Na2SC>4 with additions of H2SO4 and NaOH to control the pH is shown in Fig. 5.31 (Ref 28). The influence of chromium and nickel in moving the anodic polarization curve of iron to lower current densities persists over the indicated pH range with the corrosion rates being very low for pH >4.0. [Pg.212]

A schematic summary of the alloying metals that affect the anodic polarization curve of stainless steel is shown in Fig. 4.16. The addition of 8% nickel to an alloy containing 18% chromium forms austenitic structure SS Type 304. The addition of Mn and N increases the stability of austenitic steel. The chromium content of stainless steel affects the anodic polarization curves as shown in Fig. 4.16. Nickel promotes repassivation in a corrosive environment, but concentrations higher than 30% reduces the passivation current, the critical current density, and increases the critical pitting potential. Nitrogen... [Pg.163]


See other pages where Nickel-chromium steels, anodic is mentioned: [Pg.308]    [Pg.149]    [Pg.530]    [Pg.149]    [Pg.149]    [Pg.407]    [Pg.495]    [Pg.403]    [Pg.284]    [Pg.267]    [Pg.559]    [Pg.141]    [Pg.759]    [Pg.542]    [Pg.57]    [Pg.33]    [Pg.39]    [Pg.129]    [Pg.14]    [Pg.474]    [Pg.135]    [Pg.532]    [Pg.1235]    [Pg.310]    [Pg.311]    [Pg.373]    [Pg.554]    [Pg.527]    [Pg.483]    [Pg.2240]    [Pg.1563]    [Pg.358]    [Pg.14]    [Pg.163]    [Pg.168]    [Pg.306]   


SEARCH



Anodes nickel

Anodes steel

Nickel steels

Nickel-chromium steels, anodic polarization

Nickel/chromium steel

© 2024 chempedia.info