Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nematic optical quality

Contrary to nematic liquid crystals there is no standard method for preparing uniform defect-free FLC orientation. In the smectic C phase both the director and smectic layers should be oriented in a proper way. We are going to discuss the various techniques of FLC alignment which provide defect-free samples with high optical quality. [Pg.406]

Until the mid-1990s and after 20 years of intense research on nematic field-effect LCDs it was still uncertain whether LCDs and LC materials could indeed meet the short response time requirements and the optical quality required for LCD television. Therefore, parallel to nematic LCD research, strong efforts were made to find effects based on the inherently faster responding ferroelectric liquid crystals (FLCs). Unfortunately, FLCs proved to be difficult to surface-align, rendering them up to now commercially applicable only for niche products such as electronic eye shutters or time sequential LCD projection. FLC examples are the surface-stabilized ferroelectric (SSF)-LCD of Clark and Lagerwall [40] which initiated FLC-LCD development and the deformed helix ferroelectric (DHF)-LCD of Beresnev et al. [41], In 1995 a TFT-addressed black-white DHF-LCD television prototype with 20 ps response time and broad field of view was developed by the author and coworkers in collaboration with Philips [42] (Fig. 6.5a). [Pg.139]

The classical scheme for dichroism measurements implies measuring absorbances (optical densities) for light electric vector parallel and perpendicular to the orientation of director of a planarly oriented nematic or smectic sample. This approach requires high quality polarizers and planarly oriented samples. The alternative technique [50, 53] utilizes a comparison of the absorbance in the isotropic phase (Dj) with that of a homeotropically oriented smectic phase (Dh). In this case, the apparent order parameter for each vibrational oscillator of interest S (related to a certain molecular fragment) may be calculated as S = l-(Dh/Di) (l/f), where / is the thermal correction factor. The angles of orientation of vibrational oscillators (0) with respect to the normal to the smectic layers may be determined according to the equation... [Pg.210]

The superiority of using lasers for material studies often lies in its spatial and temporal flexibilities, that is, the material can selectively excited and probed in space and time. These qualities may allow us to elucidate fundamental material properties not accessible to conventional techniques. The location, dimension, direction, and duration of the material excitation can be readily controlled through adjustment of the beam spot, direction, polarization, and pulse width of the exciting laser field. The flexibilities can be further enhanced when two or more light waves are used to induce excitations. Such a technique, however, has not yet been fully explored in liquid-crystal research. Although the recent studies of optical-field-induced molecular reorientation in nematic liquid-crystal films have demonstrated the ability of the technique to resolve spatial variation of excitations, corresponding transient phenomena induced by pulsed optical fields have not yet been reported in the literature. Because of the possibility of using lasers to induce excitations on a very short time scale, such studies could provide rare opportunities to test the applicability of the continuum theory in the extreme cases. [Pg.189]


See other pages where Nematic optical quality is mentioned: [Pg.189]    [Pg.820]    [Pg.424]    [Pg.133]    [Pg.203]    [Pg.102]    [Pg.287]    [Pg.102]    [Pg.777]    [Pg.811]    [Pg.816]    [Pg.837]    [Pg.852]    [Pg.10]    [Pg.95]    [Pg.216]   
See also in sourсe #XX -- [ Pg.114 ]




SEARCH



Optical nematics

Optical quality

© 2024 chempedia.info