Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nazarov electrocyclization

West and coworkers developed two new domino processes in which a [4+3] cycloaddition (Nazarov electrocyclization) of l,4-dien-3-ones is succeeded by either an... [Pg.308]

SCHEME 2.20 Lewis acid catalyzed Nazarov electrocyclization in absence of silyl group. [Pg.72]

Dihydropyridones 110 are prepared from l,4-dien-3-ones 105 by a combination of electrocyclization with Schmidt reaction. Thus, enone 105 undergoes Lewis acid-catalyzed Nazarov electrocyclization, the resulting Nazarov intermediate 106 is trapped with benzyl azide, and ring expansion of the resulting azide 107 delivers zwitterion 108. This intermediate rearranges to the dihydropyridone 110 via either proton transfer or 1,5-hydride shift. [Pg.368]

Scheme 9.2 Cu(II)-mediated sequence of Nazarov electrocyclization/Wagner-Meerwein rearrangement. Scheme 9.2 Cu(II)-mediated sequence of Nazarov electrocyclization/Wagner-Meerwein rearrangement.
The photochemical Nazarov electrocyclization of 4-pyrones and of 4,4-disubstituted 2,5-cyclohexadienones takes place by means of a disrotatory process as predicted... [Pg.539]

Upon treatment of a divinyl ketone 1 with a protic acid or a Lewis acid, an electrocyclic ring closure can take place to yield a cyclopentenone 3. This reaction is called the Nazarov cyclization Protonation at the carbonyl oxygen of the divinyl ketone 1 leads to formation of a hydroxypentadienyl cation 2, which can undergo a thermally allowed, conrotatory electrocyclic ring closure reaction to give a cyclopentenyl cation 4. Through subsequent loss of a proton a mixture of isomeric cyclopentenones 5 and 6 is obtained ... [Pg.207]

The Nazarov cyclization of vinyl aryl ketones involves a disruption of the aromaticity, and therefore, the activation barrier is significantly higher than that of the divinyl ketones. Not surprisingly, the Lewis acid-catalyzed protocols [30] resulted only in decomposition to the enone derived from 46,47, and CO. Pleasingly, however, photolysis [31] readily delivered the desired annulation product 48 in 60 % yield. The photo-Nazarov cyclization reaction of aryl vinyl ketones was first reported by Smith and Agosta. Subsequent mechanistic studies by Leitich and Schaffner revealed the reaction mechanism to be a thermal electrocyclization induced by photolytic enone isomerization. The mildness of these reaction conditions and the selective activation of the enone functional group were key to the success of this reaction. [Pg.31]

The acid-catalysed ring-closure of divinyl ketones to cyclopentenones (equation 6), the Nazarov reaction6-8, represents a conrotatory electrocyclization of 4jr-cyclopentadienyl cations. The conrotatory course of the reaction was confirmed for the case of the dicyclo-hexenyl ketone 7, which yielded solely the tricyclic ketone 8 on treatment with phosphoric acid (equation 7)3b. Cycloalkanocyclopentenones 10 with c/s-fused rings are obtained from the trimethylsilyl-substituted ketones 9 (n = 1, 2 or 3) and iron(III) chloride and... [Pg.508]

The Nazarov reaction [196] is a conrotatory electrocyclization involving four electrons over a five-carbon span. Usually, a more highly substituted cyclopentenone is obtained. However, contrathermodynamic products may be generated by placing a silyl group at the p-position of a bare vinyl moiety in the cross-conjugated dienone [197]. The acceptor facilitates and controls the regiochemistry of the cyclization process. [Pg.131]

The Nazarov Cyclization is a rare example of a Lewis acid-catalyzed 4-7t conrotatory electrocyclic reaction. Asymmetric... [Pg.163]

The majority of yc/n-dichIorocycIopropane substrates examined in this study provided the desired a-chlorocyclopentenones as a result of sequential electrocyclic ring opening and Nazarov cyclization. In general, those substrates lacking additional substitution on the cyclopropane moiety provided products 75 selectively as a result of regioselective elimination to deliver the more electron-rich olefin. The mechanism for this transformation is believed to involve disrotatory halocyclopropane ring opening... [Pg.134]

Nazarov cyclizations require acid, and protonation of the ketone sets up the conjugated k system required for an electrocyclic reaction. [Pg.962]

Within the above context and building on our previous results (Rueping et al. 2005a,b, 2006a-e, 2007a Rueping and Azap 2006), we decided to examine a metal free, BINOL-phosphate catalyzed Nazarov reaction. This would not only be the first example of a Brpnsted acid catalyzed, enantioselective, electrocyclic reaction but would additionally provide a simple and direct route to optically pure cyclopentenones. [Pg.242]

We have developed the first enantioselective Brpnsted acid catalyzed Nazarov reaction. This efficient method is not only the first example of an organocatalytic electrocyclic reaction but it also provides the corre-... [Pg.244]

The most recent and powerful example of supramolecular catalysis comes from an elegant combination of the principles delineated above. The Nazarov cyclization can be used to prepare Cp (pentamethylcyclopentadiene) from a mixture of pentanedienols, as in Fig. 20. This reaction requires formation of a carbocation by dehydration of the protonated alcohol, and then electrocyclization of the corresponding bis-allylic carbocation. [Pg.16]

The combination of pericyclic transformations as cycloadditions, sigmatropic rearrangements, electrocyclic reactions and ene reactions with each other, and also with non-pericyclic transformations, allows a very rapid increase in the complexity of products. As most of the pericyclic reactions run quite well under neutral or mild Lewis acid acidic conditions, many different set-ups are possible. The majority of the published pericyclic domino reactions deals with two successive cycloadditions, mostly as [4+2]/[4+2] combinations, but there are also [2+2], [2+5], [4+3] (Nazarov), [5+2], and [6+2] cycloadditions. Although there are many examples of the combination of hetero-Diels-Alder reactions with 1,3-dipolar cycloadditions (see Section 4.1), no examples could be found of a domino all-carbon-[4+2]/[3+2] cycloaddition. Co-catalyzed [2+2+2] cycloadditions will be discussed in Chapter 6. [Pg.280]

A third and critical advance in the development of the Nazarov cyclization was the demtmstration that it belongs to the general class of cationic electrocyclic reactions (Scheme 4). This broadened its definition to include reactions which involve pentadienylic cations or equivalents and thus expanded the range of precursors for cyclopentenones. Further, the stereochemical features of electrocyclization enhanced the utility of the reaction and, in addition, stimulated the development of a photochemical variant. [Pg.753]

It is now well established that the Nazarov cyclization is a pericyclic reaction belonging to the class of electrocyclizations. As with all pericyclic reactions, mectuuiism and stereochemistry are inexorably coupled and any discussion of one feature must invoke the other. In this section the stereospecific aspects of the Nazarov cyclization are discussed, the stereoselective aspects of the reaction are dealt with individually in each of the following sections. [Pg.754]

The Nazarov cyclization is an example of a 47r-electrocyclic closure of a pentadienylic cation. The evidence in support of this idea is primarily stereochemical. The basic tenets of the theory of electrocyclic reactions make very clear predictions about the relative configuration of the substituents on the newly formed bond of the five-membered ring. Because the formation of a cyclopentenone often destroys one of the newly created centers, special substrates must be constructed to aUow this relationship to be preserved. Prior to the enunciation of the theory of conservation of orbital symmetry, Deno and Sorensen had observed the facile thermal cyclization of pentadienylic cations and subsequent rearrangements of the resulting cyclopentenyl cations. Unfortunately, these secondary rearrangements thwarted early attempts to verify the stereochemical predictions of orbital symmetry control. Subsequent studies with Ae pentamethyl derivative were successful. - The most convincing evidence for a pericyclic mechanism came from Woodward, Lehr and Kurland, who documented the complementary rotatory pathways for the thermal (conrotatory) and photochemical (disrotatoiy) cyclizations, precisely as predicted by the conservation of orbital symmetry (Scheme 5). [Pg.754]

Beyond the disrotatory or conrotatory stereochemical imperative which must accompany all Nazarov cyclizations there exists a secondary stereochemical feature. This feature arises because of the duality of allowed electrocyclization pathways. When the divinyl ketone is chiral the two pathways lead to dia-stereomers. The nature of the relationship between the newly created centers and preexisting centers depends upon the location of the cyclopentenone double bond. The placement of this double bond is established after the electrocyclization by proton loss from the cyclopentenyl cation (equation 5). Loss of H, H or in this instance generates three tautomeric products. The lack of control in this event is a drawback of the classical cyclization. Normally, the double bond occupies the most substituted position corresponding to a Saytzeff process. The issue of stereoselection with chiral divinyl ketones is iUustrated in Scheme 7. The sense of rotation is defined by clockwise (R) or counterclockwise (5) viewing down the C—O bond. Thus, depending on the placement of the double bond, the newly created center may be proximal or distal to the preexisting center. If = H the double bond must reside in a less substituted environment to establish stereoselectivity. [Pg.755]

The pericyclic process comes next and it is a Nazarov reaction (p. 962), a conrotator electrocyclic closure of a pentadienyl cation to give a cyclopentenyl cation. There is r stereochemistry and the only regiochemistry is the position of the double bond at the end of th -. reaction. Here it prefers the more substituted side of the ring. [Pg.312]

The stereoselective synthesis of (+)-trichodiene was accomplished by K.E. Harding and co-workers. The synthesis of this natural product posed a challenge, since it contains two adjacent quaternary stereocenters. For this reason, they chose a stereospecific electrocyclic reaction, the Nazarov cyclization, as the key ring-forming step to control the stereochemistry. The cyclization precursor was prepared by the Friedel-Crafts acylation of 1,4-dimethyl-1-cyclohexene with the appropriate acid chloride using SnCU as the catalyst. The Nazarov cyclization was not efficient under protic acid catalysis (e.g., TFA), but in the presence of excess boron trifluoride etherate high yield of the cyclized products was obtained. It is important to note that the mildness of the reaction conditions accounts for the fact that both of the products had an intact stereocenter at C2. Under harsher conditions, the formation of the C2-C3 enone was also observed. [Pg.305]

Nazarov cyclization reaction. Synthesis of cyclopentenones by the acid-catalyzed electrocyclic ring closure of divinyl or allylvinyl ketones available by hydration of divinylacetylenes. [Pg.878]


See other pages where Nazarov electrocyclization is mentioned: [Pg.266]    [Pg.540]    [Pg.266]    [Pg.540]    [Pg.456]    [Pg.443]    [Pg.48]    [Pg.106]    [Pg.157]    [Pg.132]    [Pg.133]    [Pg.138]    [Pg.139]    [Pg.242]    [Pg.245]    [Pg.761]    [Pg.313]    [Pg.304]    [Pg.512]    [Pg.158]   
See also in sourсe #XX -- [ Pg.43 ]




SEARCH



© 2024 chempedia.info