Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Naphthalene, alternant oxidation

An alternative route to phthalic anhydride is the partial oxidation of naphthalene. The heat of reaction is — 430 kcal/mol. This reaction can be performed using a promoted V2O5 catalyst on silica, much like that considered in Example 9.1. Suppose In(fik) = 31.6800—19,100/T for the naphthalene oxidation reaction and that the subsequent, complete oxidation of phthalic anhydride follows the kinetics of Problem 9.3. Suppose it is desired to use the same reactor as in Example 9.1 but with a,>, = 53g/ m. Determine values for and T aii that maximize the output of phthalic anhydride from naphthalene. [Pg.346]

FIGU RE 8.1 Alternative pathways for the oxidative metabolism of naphthalene by (a) bacteria and (b) fungi. [Pg.386]

However, when the reductions were carried out with lithium and a catalytic amount of naphthalene as an electron carrier, far different results were obtained(36-39, 43-48). Using this approach a highly reactive form of finely divided nickel resulted. It should be pointed out that with the electron carrier approach the reductions can be conveniently monitored, for when the reductions are complete the solutions turn green from the buildup of lithium naphthalide. It was determined that 2.2 to 2.3 equivalents of lithium were required to reach complete reduction of Ni(+2) salts. It is also significant to point out that ESCA studies on the nickel powders produced from reductions using 2.0 equivalents of potassium showed considerable amounts of Ni(+2) on the metal surface. In contrast, little Ni(+2) was observed on the surface of the nickel powders generated by reductions using 2.3 equivalents of lithium. While it is only speculation, our interpretation of these results is that the absorption of the Ni(+2) ions on the nickel surface in effect raised the work function of the nickel and rendered it ineffective towards oxidative addition reactions. An alternative explanation is that the Ni(+2) ions were simply adsorbed on the active sites of the nickel surface. [Pg.230]

Anthraquinone itself is traditionally available from the anthracene of coal tar by oxidation, often with chromic acid or nitric acid a more modern alternative method is that of air oxidation using vanadium(V) oxide as catalyst. Anthraquinone is also produced in the reaction of benzene with benzene-1,2-dicarboxylic anhydride (6.4 phthalic anhydride) using a Lewis acid catalyst, typically aluminium chloride. This Friedel-Crafts acylation gives o-benzoylbenzoic acid (6.5) which undergoes cyclodehydration when heated in concentrated sulphuric acid (Scheme 6.2). Phthalic anhydride is readily available from naphthalene or from 1,2-dimethylbenzene (o-xylene) by catalytic air oxidation. [Pg.280]

Photoreduction of m-dinitrobenzene is suppressed by nitric oxide and atmospheric oxygen Quenching by naphthalene, which also has been observed, does not necessarily imply a triplet excited reacting state, since quenching of the excited singlet by naphthalene would be an alternative possibility. [Pg.56]

Until 1959, all the phthalic anhydride was made from coal tar naphthalene, the double-benzene ring compound also shown in Figure 18—3 was easily oxidized directly to phthalic acid. But with phthalic anhydride being only a small share of coal oil, and with the demand for phthalic anhydride escalating rapidly, coal tar became an inadequate source. The frantic search for an alternative route led to the development of the recovery process for ortho-xylene from refinery aromatics streams discussed in Chapter 3 and the... [Pg.264]

The addition of mercuric nitrate is here written as a 1,4-addition, but 1,2-addition would give the same final product, and there is no evidence in the facts concerning benzene which enables us to choose between the alternative hypotheses. Toluene yields tri-nitro-m-cresol by a similar series of reactions, and it is clear that the nitro group in the addition product of mercuric nitrate and toluene has taken either the 2-, the 4-, or the 6-position, that is, one or the other of the positions activated by the methyl group. In the addition of mercuric nitrate to naphthalene, the nitro group correspondingly may be supposed to go to the active a-position. If the addition is 1,2-, the product on oxidation will yield a derivative of /J-naphthol. If it is 1,4-, it will yield a derivative of a-naphthol. The two possibilities are indicated below. [Pg.163]

The alternative potential synthetic routes for the drug Naproxen neatly illustrate the industrial significance of asymmetric hydroformylation and asymmetric hydrocyanation reactions. This is shown in Fig. 9.12. Regio- and en-antioselective hydroformylation or hydrocyanation of 6-methoxy 2-vinyl naphthalene can give the desired enantiomers of the branched aldehyde or nitrile. These two intermediates can be oxidized or hydrolyzed to give 5-Naproxen. [Pg.218]

Copolymers containing alternating l,4-bis(phenylethenyl)benzene, l,4-bis(phenylethenyl)-2,5-dimethoxybenzene or l,5-bis(phenylethenyl)naphthalene chromophores, and dibenzo-24-crown-8 spacers within the polymer backbone, best represented by 87, showed blue light emission in solution, and tunable photoluminescence and electroluminescence depending on the structure of the chromophore. Blends of these copolymers with a small amount of poly(ethylene oxide), and lithium salt as active layers, form efficient light-emitting electrochemical cells <2003JMC800>. [Pg.693]

The manufacture of phthalic anhydride (world installed capacity ca. 4.4 Mt/a) has several points of similarity to that of maleic anhydride in that there are two alternative feedstocks and a large amount of heat is released. The first process, introduced by BASF at the end of 19 century, was based on the liquid phase oxidation of naphthalene catalyzed by mercury salts. It was later replaced by the cleaner gas phase process, carried out over vanadium and molybdenum oxides. Naphthalene was supplied by coal tar distillation and was used exclusively until the end of 1950s when u-xylene, of petrochemical origin, became an abundantly available feedstock (Equation 36). A few production units however can use either feedstock, taking advantage of price fluctuations in coke plants (naphthalene) and in refineries (u-xylene). [Pg.59]

The apparatus employed in toluene oxidation requires a carburetor or vaporizing chamber similar to that employed in naphthalene oxidation in which air is bubbled through the liquid toluene to obtain a high proportion of hydrocarbon in the mixture. Secondary air may be then introduced to dilute the vapor-air mixture to the desired concentration. An alternative method is to spray the toluene into the air stream at the entrance of the reaction chamber or to allow liquid toluene to drip or flow into the chamber at the predetermined rate. [Pg.390]

Baneijee et al.66 have developed an alternative synthesis of the compound (129) whose utility in synthesis of Mansonone F (120) has been reported by Suh and collaborators.65 This is described in Scheme 13. Tetralone (127) was reduced with sodium borohydride to alcohol which on alkylation with benzyl chloride produced benzyl derivative (132). Its conversion to (133) was attempted by treatment with boron tribromide in dichloromethane. C ompound (133) (characterized b y m ass s pectroscopy) was obtained in poor yield. The major product was the diol (134), whose structure was confirmed by spectral data. It indicates that the demethylation was accompanied by debenzylation. Treatment of diol (134) with triethyl orthoformate and aluminium chloride afforded aldehyde (135) which was subjected to catalytic hydrogenation to produce compound (136). It was transformed to ketone (137) by oxidation and then made to react with methylmagnesium bromide in ether. The resulting tertiary alcohol on heating with p-toluenesulfonic acid in toluene for 24 hr produced the naphthalene (129) in 78% yield. [Pg.221]


See other pages where Naphthalene, alternant oxidation is mentioned: [Pg.208]    [Pg.504]    [Pg.189]    [Pg.40]    [Pg.59]    [Pg.195]    [Pg.27]    [Pg.208]    [Pg.781]    [Pg.81]    [Pg.66]    [Pg.206]    [Pg.21]    [Pg.551]    [Pg.68]    [Pg.42]    [Pg.307]    [Pg.59]    [Pg.227]    [Pg.12]    [Pg.439]    [Pg.496]    [Pg.563]    [Pg.8]    [Pg.136]    [Pg.250]    [Pg.508]    [Pg.302]    [Pg.56]    [Pg.40]    [Pg.593]    [Pg.461]    [Pg.446]    [Pg.111]    [Pg.218]   


SEARCH



Naphthalene oxidation

© 2024 chempedia.info