Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

N-terminus

An amino acid sequence is ambiguous unless we know the direction m which to read It—left to right or right to left We need to know which end is the N terminus and which IS the C terminus As we saw m the preceding section carboxypeptidase catalyzed hydrolysis cleaves the C terminal ammo acid and so can be used to identify it What about the N terminus ... [Pg.1131]

Reaction of the B chain peptide with 1 fluoro 2 4 dimtrobenzene established that phenylalanine is the N terminus... [Pg.1131]

When Sanger s method for N terminal residue analysis was discussed you may have wondered why it was not done sequentially Simply start at the N terminus and work steadily back to the C terminus identifying one ammo acid after another The idea is fine but It just doesn t work well m practice at least with 1 fluoro 2 4 dimtrobenzene... [Pg.1134]

Only the N terminal amide bond is broken m the Edman degradation the rest of the peptide chain remains intact It can be isolated and subjected to a second Edman procedure to determine its new N terminus We can proceed along a peptide chain by beginning with the N terminus and determining each ammo acid m order The sequence is given directly by the structure of the PTH derivative formed m each successive degradation... [Pg.1135]

Deprotect the ammo group at the N terminus and the carboxyl group at the C terminus... [Pg.1137]

Its N terminus with a Z group and at its C terminus as a benzyl ester can be completely deprotected m a single operation... [Pg.1139]

An amide linkage between two a ammo acids is called a peptide bond By convention peptides are named and written beginning at the N terminus... [Pg.1151]

Carboxypeptidase catalyzed hydrolysis can be used to identify the C terminal ammo acid The N terminus is determined by chemical means One reagent used for this purpose is Sanger s reagent 1 fluoro 2 4 dimtrobenzene (see Figure 27 9)... [Pg.1151]

This reaction forms the basis of one method of terminal residue analysis A peptide is treated with excess hydrazine in order to cleave all the peptide linkages One of the terminal amino acids is cleaved as the free amino acid and identified all the other ammo acid residues are converted to acyl hydrazides Which amino acid is identified by hydrazmolysis the N terminus or the C terminus ... [Pg.1154]

N terminus (Section 27 7) The amino acid at the end of a pep tide or protein chain that has its a ammo group intact that IS the a ammo group is not part of a peptide bond... [Pg.1289]

Two domains, t1 and t2, exist which affect the GR post-DNA binding transcription activity (37). The major (t1) transactivation domain is 185 amino acid residues ia length with a 58-tesidue a-heUcal functional cote (38). The t1 domain is located at the N terminus of the proteia the minor (t2) trans activation domain residues on the carboxy-terminal side of the DNA binding domain. [Pg.98]

The methods involved in the production of proteins in microbes are those of gene expression. Several plasmids for expression of proteins having affinity tails at the C- or N-terminus of the protein have been developed. These tails are usefiil in the isolation of recombinant proteins. Most of these vectors are commercially available along with the reagents that are necessary for protein purification. A majority of recombinant proteins that have been attempted have been produced in E. Coli (1). In most cases these recombinant proteins formed aggregates resulting in the formation of inclusion bodies. These inclusion bodies must be denatured and refolded to obtain active protein, and the affinity tails are usefiil in the purification of the protein. Some of the methods described herein involve identification of functional domains in proteins (see also Protein engineering). [Pg.247]

Methionyl hGH. The first form of hGH to be produced through recombinant DNA technology was actually a derivative of hGH having one additional methionine residue at its N-terminus (11). Although technology has advanced to the stage where natural sequence hGH can easily be produced, as of this writing this derivative, referred to as methionyl hGH, is stiU produced commercially. [Pg.196]

Acetylated hGH A form of hGH that is acetylated at the N-terminus has been isolated and identified (15). It is not clear if acylation serves a regulatory role or is simply an artifact of the purification. [Pg.196]

Truncated Forms. Tmncated forms of hGH have been produced, either through the actions of enzymes or by genetic methods. 2-CAP, generated by the controlled actions of the trypsin, has the first eight residues at the N-terminus of hGH removed. Other tmncated versions of hGH have been produced by modification of the gene before expression in a suitable host. The first 13 residues have been removed to yield a derivative having distinctive biological properties (30). In this latter case the polypeptide chain is not cleaved. [Pg.196]

Figure 2.2 The a helix is one of the major elements of secondary structure in proteins. Main-chain N and O atoms ate hydrogen-bonded to each other within a helices, (a) Idealized diagram of the path of the main chain in an a helix. Alpha helices are frequently illustrated in this way. There are 3.6 residues per turn in an a helix, which corresponds to 5.4 A (1.5 A pet residue), (b) The same as (a) but with approximate positions for main-chain atoms and hydrogen bonds Included. The arrow denotes the direction from the N-terminus to the C-termlnus. Figure 2.2 The a helix is one of the major elements of secondary structure in proteins. Main-chain N and O atoms ate hydrogen-bonded to each other within a helices, (a) Idealized diagram of the path of the main chain in an a helix. Alpha helices are frequently illustrated in this way. There are 3.6 residues per turn in an a helix, which corresponds to 5.4 A (1.5 A pet residue), (b) The same as (a) but with approximate positions for main-chain atoms and hydrogen bonds Included. The arrow denotes the direction from the N-terminus to the C-termlnus.
The fundamental unit of tertiary structure is the domain. A domain is defined as a polypeptide chain or a part of a polypeptide chain that can fold independently into a stable tertiary structure. Domains are also units of function. Often, the different domains of a protein are associated with different functions. For example, in the lambda repressor protein, discussed in Chapter 8, one domain at the N-terminus of the polypeptide chain binds DNA, while a second domain at the C-terminus contains a site necessary for the dimerization of two polypeptide chains to form the dimeric repressor molecule. [Pg.29]

A, B, and C, surrounded by a helices. The polypeptide chain is colored in sections from the N-terminus to facilitate following the chain tracing in the order green, blue, yellow, red and pink. The red region corresponds to the active site loop in the serpins which in ovalbumin is protruding like a handle out of the main body of the structure. (Adapted from R.W. Carrell et al.. Structure 2 257-270, 1994.)... [Pg.111]

The 434 Cro molecule contains 71 amino acid residues that show 48% sequence identity to the 69 residues that form the N-terminal DNA-binding domain of 434 repressor. It is not surprising, therefore, that their three-dimensional structures are very similar (Figure 8.11). The main difference lies in two extra amino acids at the N-terminus of the Cro molecule. These are not involved in the function of Cro. By choosing the 434 Cro and repressor molecules for his studies, Harrison eliminated the possibility that any gross structural difference of these two molecules can account for their different DNA-binding properties. [Pg.137]

Figure 8.23 The helix-turn-helix motifs of the subunits of both the PurR and the lac repressor subunits bind to the major groove of DNA with the N-terminus of the second helix, the recognition helix, pointing into the groove. The two hinge helices of each arm of the V-shaped tetramer bind adjacent to each other in the minor groove of DNA, which is wide and shallow due to distortion of the B-DNA structure. (Adapted from M.A. Schumacher et al.. Science 266 763-770, 1994.)... Figure 8.23 The helix-turn-helix motifs of the subunits of both the PurR and the lac repressor subunits bind to the major groove of DNA with the N-terminus of the second helix, the recognition helix, pointing into the groove. The two hinge helices of each arm of the V-shaped tetramer bind adjacent to each other in the minor groove of DNA, which is wide and shallow due to distortion of the B-DNA structure. (Adapted from M.A. Schumacher et al.. Science 266 763-770, 1994.)...
Figure 9.10 Schematic diagrams illustrating the complex between DNA (orange) and one monomer of the homeodomain. The recognition helix (red) binds in the major groove of DNA and provides the sequence-specific interactions with bases in the DNA. The N-terminus (green) binds in the minor groove on the opposite side of the DNA molecule and arginine side chains make nonspecific interactions with the phosphate groups of the DNA. (Adapted from C.R. Kissinger et al Cell 63 579-590, 1990.)... Figure 9.10 Schematic diagrams illustrating the complex between DNA (orange) and one monomer of the homeodomain. The recognition helix (red) binds in the major groove of DNA and provides the sequence-specific interactions with bases in the DNA. The N-terminus (green) binds in the minor groove on the opposite side of the DNA molecule and arginine side chains make nonspecific interactions with the phosphate groups of the DNA. (Adapted from C.R. Kissinger et al Cell 63 579-590, 1990.)...
Figure 10.3 Schematic diagram of the stmcture of three zinc fingers of Zif 268 bound to DNA. The three zinc fingers, which bind In tandem to the major groove of DNA, are colored blue, red and green from the N-terminus. The zinc fingers have the same stmcture and bind in a similar way with the N-terminus of the a helix pointing into the major groove. (Adapted from N.P. Pavletich et al.. Science 261 1701-1707, 1993.)... Figure 10.3 Schematic diagram of the stmcture of three zinc fingers of Zif 268 bound to DNA. The three zinc fingers, which bind In tandem to the major groove of DNA, are colored blue, red and green from the N-terminus. The zinc fingers have the same stmcture and bind in a similar way with the N-terminus of the a helix pointing into the major groove. (Adapted from N.P. Pavletich et al.. Science 261 1701-1707, 1993.)...
Figure 10.5 Comparison of the sequence-specific binding to DNA of six different zinc fingers. Residues in the N-terminus of the a helix in the finger regions are numbered 1 to 6. The residue immediately preceding the a helix is numbered -1. Amino acid residues and nucleotides that make sequence-specific contacts are colored. In spite of the structural similarities between the zinc fingers and their overall mode of binding, there is no simple rule that governs which bases the fingers contact. Figure 10.5 Comparison of the sequence-specific binding to DNA of six different zinc fingers. Residues in the N-terminus of the a helix in the finger regions are numbered 1 to 6. The residue immediately preceding the a helix is numbered -1. Amino acid residues and nucleotides that make sequence-specific contacts are colored. In spite of the structural similarities between the zinc fingers and their overall mode of binding, there is no simple rule that governs which bases the fingers contact.
Figure 13.30 Ribbon diagram of the structure of Src tyrosine kinase. The structure is divided in three units starting from the N-terminus an SH3 domain (green), an SH2 domain (blue), and a tyrosine kinase (orange) that is divided into two domains and has the same fold as the cyclin dependent kinase described in Chapter 6 (see Figure 6.16a). The linker region (red) between SH2 and the kinase is bound to SH3 in a polyproline helical conformation. A tyrosine residue in the carboxy tail of the kinase is phosphorylated and bound to SH2 in its phosphotyrosine-binding site. A disordered part of the activation segment in the kinase is dashed. (Adapted from W. Xu et al.. Nature 385 595-602, 1997.)... Figure 13.30 Ribbon diagram of the structure of Src tyrosine kinase. The structure is divided in three units starting from the N-terminus an SH3 domain (green), an SH2 domain (blue), and a tyrosine kinase (orange) that is divided into two domains and has the same fold as the cyclin dependent kinase described in Chapter 6 (see Figure 6.16a). The linker region (red) between SH2 and the kinase is bound to SH3 in a polyproline helical conformation. A tyrosine residue in the carboxy tail of the kinase is phosphorylated and bound to SH2 in its phosphotyrosine-binding site. A disordered part of the activation segment in the kinase is dashed. (Adapted from W. Xu et al.. Nature 385 595-602, 1997.)...

See other pages where N-terminus is mentioned: [Pg.1127]    [Pg.1133]    [Pg.1135]    [Pg.1137]    [Pg.1142]    [Pg.1148]    [Pg.1150]    [Pg.1178]    [Pg.288]    [Pg.174]    [Pg.176]    [Pg.190]    [Pg.197]    [Pg.198]    [Pg.241]    [Pg.444]    [Pg.16]    [Pg.82]    [Pg.82]    [Pg.100]    [Pg.146]    [Pg.161]    [Pg.187]    [Pg.241]    [Pg.256]    [Pg.314]    [Pg.316]   
See also in sourсe #XX -- [ Pg.66 ]

See also in sourсe #XX -- [ Pg.249 ]




SEARCH



Terminus

© 2024 chempedia.info